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ABSTRACT: Quantitative characterization of a single-cell phenotype remains
challenging. We combined a scalable microfluidic array of parallel cell culture
chambers and stimulated Raman scattering (SRS) microscopy to quantitatively
characterize the response of lipid droplet (LD) formation to free-fatty-acid
stimuli with single-LD resolution at the single-cell level. By enabling the
systematic live-cell imaging with SRS microscopy in a microfluidic device, we
were able to quantify the morphology of over a thousand live cells in 10
different chemical environments and with 8 replicates for each culture
condition, in a single experiment, and without relying on fluorescent labeling.
We developed an image processing pipeline for cell segmentation and LD
morphology quantification using dual-channel SRS images. This allows us to
construct distributions of the morphological parameters of LDs in the cellular population and expose the vast phenotypic
heterogeneity among genetically similar cells. Specifically, this approach provides an analytical tool for quantitatively investigating
LD morphology in live cells in situ. With this high-throughput, high-resolution, and label-free method, we found that LD growth
dynamics showed considerable cell to cell variation. Lipid accumulation in nonadipocyte cells is mainly reflected in the increase of
LD number, as opposed to an increase in their size or lipid concentration. Our method allows statistical single-cell quantification
of the LD distribution for further investigation of lipid metabolism and dynamic behavior, and also extends the possibility to
couple with other “omics” technologies in the future.

Q uantifying cellular behavior is an important way to
provide in-depth insights into metabolism and can lead

to advances in medicine. Until recently, the majority of
biological measurements have been performed on bulk samples
to provide information about averaged populations, while
obscuring the state of small subpopulations or outlier cells.
However, cellular heterogeneity is a fundamental feature of
many biological processes, and the characterization of cell-to-
cell variation by several emerging imaging technologies has
been proved to help the deconvolution of mixed cell
populations.1−3

The metabolic pathway is a system which exhibits significant
intercellular variability. As one of the most conserved pathways
in metabolism, lipid metabolism has drawn great interest
because of its strong association with obesity, diabetes, and
other metabolic syndromes.4 It is critical to investigate the
emergence and the consequence of heterogeneity in such a
complex biosystem. Microscopic imaging has always been
suitable to interrogate single cells in detail, offering a massive
amount of data of cell morphology and assessing the difference
between cells. For example, single-cell size analysis of the
subcutaneous adipocytes explained the relationship between
fatty acid uptake and insulin sensitivity by employing a new
imaging assay.5 The significance of such kind of single-cell
studies highlights the need of high-throughput, systematic

approaches to collect quantitative information about the
phenotypic and genotypic characteristics of single cells. Thus,
technologies for investigating the heterogeneity of response in
single cells are of great interest.
Lipid droplets (LDs), known as an energy reservoir organelle

in almost all types of eukaryotic cells, are crucial for lipid
metabolism. The phenotypic heterogeneity of LDs is now
appreciated as an important component in physiology and
metabolism.6 The features of LDs vary across different cell
types, and even differs considerably between individual cells of
populations.4,7,8 Previous studies based on large populations of
cells mostly reported averaged measurements of LD phenotype
without distinguishing the intrinsic LDs distribution among
cells. The phenotypic heterogeneity of LDs is now appreciated
to be associated with both the intrinsic gene regulation and
external chemical stimuli,9,10 and recent research even suggests
that the cell variability in LD morphology indicates a
mechanism to reduce lipotoxicity.3 In addition, the discovery
of the influence of adipokines on physiology and metabo-
lism6,11 implies that the heterogeneity in adipogenesis may
interfere with the efficacy of drugs aiming at adipocyte
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differentiation. Tracing the origin of such variability in lipid
metabolism will not only open a door to many new biological
questions but also improve the treatment of lipid metabolism
diseases and the drug efficiency evaluation. The need of LD
quantification with single-cell resolution is therefore necessary
and acute.
Statistical analysis of cell-to-cell heterogeneity in LD

characteristics requires the collection of data from a large
number of cells under varying conditions in a systematic
fashion. However, experiments using manual pipetting and
dish-based cell culture methods have limited the throughput
and reproducibility. Microfluidic technology12,13 largely over-
comes these difficulties by precise fluidic control, automated
manipulation of chemical delivery, multiplexing potential, and
low reagent consumption. Combined with fluorescent live-cell
microscopy, microfluidics-based cell culture platforms have
contributed to a better understanding of stem cell differ-
entiation,14 cell migration,15 signaling dynamics,16,17 and other
processes.18−20 However, for LD quantification, fluorescent
labeling is not always an optimal solution. In some cases, the
intercalation of fluorescent molecules can alter the properties of
lipid-rich structures,21,22 and the labeling efficiency of
fluorescent lipid molecules in different cells also poses a
problem to the quantitation of LDs.23 Furthermore, nonspecific
binding and diffuse staining of fluorescent dyes may lead to
misleading conclusions from image analysis.24,25 As an
alternative to fluorescence, nonlinear optical imaging, which
probes the intrinsic optical properties of molecular structures,
provides an attractive approach for quantifying LDs. In
particular, stimulated Raman scattering (SRS) microscopy26

has been used in the study of lipid biology in recent years.27−30

In SRS, when the beating frequency of pump and Stokes beams
matches the C−H bond stretching frequency of CH2 groups, a
strong signal is produced from lipid rich structures. In this way,
long-term three-dimensional live cell imaging with SRS is not
limited by photobleaching. Additionally, the intensity of SRS
signal is proportional to the number of chemical bonds in the
detection foci,26 which makes the quantification of LDs
straightforward to carry out. The combination of microfluidic
technology and SRS microcopy presents an ideal approach to
performing quantitative studies on lipid metabolism with single-
cell resolution.
Here we developed a scalable microfluidic array of parallel

cell culture chambers capable of titrating reagents into the
extracellular environment of independently addressable nano-
liter cell culture colonies. We also constructed a SRS
microscope that is capable of acquiring a Raman signal,
propagating through the microfluidic device, from the cells
cultured on-chip. With this integrated system, we performed a
systematic imaging of cell colonies exposed to varying amounts
of extracellular fatty acid. We also developed an automated
image processing algorithm suitable for multichannel chemical
images, with which the number, volume, and intensity of single
LDs were quantified at the single-cell level. We applied this
integrated platform to the study of the free fatty acid uptake
process, which stimulates the formation of LDs in nonadipocyte
cells, and we demonstrated the dominant accumulation
mechanism of LDs in multiple types of cells based on statistical
analysis of single LDs and single cells. This high-throughput
approach provided a quantitative landscape presenting the cell
to cell variation of LD growth dynamics.

■ EXPERIMENTAL SECTION

Cell Culture on Chip and Device Operation. The
channels of the microfluidic device include the cell flow
channels and reagent flow channels (see Figure S1 in the
Supporting Information). Before use, all of the valves were
injected with sterilized water and pressurized with 30 psi. All of
the flow channels were washed with sterilized water and air-
dried. The cell flow channels were then incubated with 10 mg/
mL fibronectin (F0895, Sigma-Aldrich, U.S.A.) at 37 °C for 60
min. After incubation, the cell flow channels were rinsed with
sterilized water thoroughly, air-dried, and filled with fresh
culture medium. All of the valves were closed before seeding
cells. After the valves controlling the waste channel and the
Cell/Medium Outputs were opened, the cell suspension was
injected onto the chip from the Cell/Medium Input by
sterilized gel-loading tips (2239916, Bio-Rad Laboratories,
U.S.A.), which were pressurized with 5 psi. When a steady and
uniform flow of cells was introduced, the waste channel valve
was closed, and the valves controlling cell culture chambers
(containment valves in Figure S1) were opened one at a time to
let the cells flow through. After every chamber in a column was
filled with cells (typically ∼15−20 cells/chamber), the
containment valve of this column was closed. This procedure
was repeated for all of the eight columns. For experiments in
which multiple cell types were cultured on the same chip, after
one cell type was successfully seeded on the chip, the Cell/
Medium Input and the waste channel were thoroughly flushed
with sterilized water until all of the cells were washed away and
air-dried to prevent cross contamination between different
kinds of cells. Then the waste channel was filled with fresh
medium again; subsequently, a different cell type could be
injected onto the chip, and the cell seeding procedures were
repeated.
After cells were attached (∼2 h), the microfluidic device with

cells was incubated overnight at 37 °C in a humidified
incubator with 5% (v/v) CO2 to attain a stable cell state. The
culture medium was automatically changed every 2 h through a
LabVIEW (National Instruments) program. Cells can live and
divide healthily on chip for at least 3 days (see Figure S2 in the
Supporting Information). We seeded HeLa cells on chip and in
common dishes, and we compared the cell morphology and the
average LD intensity in different concentrations of oleic acid
separately (see Figure S3 in the Supporting Information). The
comparable results indicate that the microfluidic system
provides a cell culturing environment as stable as in Petri
dishes. During medium change, a sterilized gel-loading tip with
cell culture medium was injected into the cell/medium input
and pressurized with ∼1−2 psi. The medium change time for
each column was 5 min. Then the oleic acid was injected onto
the chip from the OA Input by sterilized gel-loading tips, which
were pressurized with 5 psi. After the oleic acid channels were
fully filled, the pressure of mixing valves were adjusted down to
10 psi (other valves were pressurized by 30 psi), and all of
containment valves were kept closed in order to preserve the
oleic acid titration. Then the interface valves (see Figure S1 in
the Supporting Information) were opened, and the mixing
valves were actuated for 30 min at 1 Hz. During the mixing
step, the chip with cells was put in the CO2 incubator. The final
concentration of oleic acid was determined by the input oleic
acid concentration, and the volume ratio between the cell
culture chamber and the oleic acid chamber (see Figure S1 in
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the Supporting Information). Cells were incubated with oleic
acid concentration for 3 h before imaging.
Image Processing. We used 512 × 512 images in our

study, as the lipid droplet (LD) is a highly dynamic organelle,
and its measurement asks for a balance between the time
resolution and spatial resolution, especially when 3-D live-cell
imaging is applied (see Figure S4 in the Supporting
Information). We developed our imaging processing algorithm
for LD quantification of SRS images. The custom scripts were
written in MATLAB. Compared with LDs in mature
adipocytes, the size of LDs in nonadipocytes cells is much
smaller,4,7 yielding a relative low contrast between LDs and the
cytoplasm. Additionally, other cell organelles with membrane-
rich structures, like ER, may also be probed by SRS in lipid
band and generate irregular background pattern (see Figure
S5−6 in the Supporting Information). Thus, background
removal is crucial in SRS images processing. Under low
excitation power, the lipid content in these organelles was very
low and widely distributed, and thus, their contribution to SRS
signals was much less compared with that of lipid droplets. For
both the lipid-specific images (CH2 stretching vibration, 2850
cm−1) and protein-specific images (CH3 stretching vibration,
2950 cm−1), the first step was to perform background
smoothing to each slice of the image stack by morphology
top-hat filtering. For lipid-specific images, an intensity threshold

was set for eliminating small residues with low intensity noise
which might come from the fine fluctuation of morphology top-
hat filtering. The remaining signals were binarized to generate a
LD mask. As the 3-D images are cubic arrays in space, with a
field of view of 211 × 211 μm2, one single pixel in a 512 × 512
image represents about half a micron. We considered that, first,
LDs are approximately spherical, and second, LDs less than one
micron are barely detected because of the diffraction limit.
Hence, eight pixels representing about one cubic micron were
taken as a conservative filter, and any connected objects in
three dimensions that had fewer than eight pixels were removed
from the binary mask. The processed LD mask was then used
for calculating total LD size and intensity by counting the
number of pixels per droplet and then mapping each pixel’s
intensity back to the mask area and summing them across the
image stack.
In the lipid-specific channel, the scattered spatial distribution

of the lipid-rich structures in the cell makes automated cell
boundary segmentation challenging in SRS images. While for
protein, because of the existence of cytoskeleton, protein
distribution in cells are more abundant and uniform, resulting
in a high contrast between the cell and the background in
protein-specific images. Therefore, protein-specific images
efficiently reveal information about the cell outlines. For
protein-specific images, after background removal, Otsu’s

Figure 1. System schematic diagram and the experimental workflow. (a) Setup of the SRS microscope. The microfluidic cell culture chip and SRS
imaging platform were combined to quantify lipid droplets morphology change in situ. Pump beam and Stokes beam, modulated by an electro-
optical modulator (EOM), were coaligned and directed into a scanning microscope and then focused onto the sample. Transmitted light was
collected by a long-working distance condenser to allow the use of microfluidic devices and transformed to an electronic signal by a photodiode
(PD) after filtering out the Stokes beam. Then the signal was sent into lock-in amplifier and demodulated for image reconstruction in computer. (b)
The design of the microfluidic chip (scale bar: 2 mm). Orange and pink lines represent the flow channels, and blue lines are the control channels.
Numbers 1−4 label regions of the cell/medium output, OA output, cell/medium input, and OA input, respectively. The different volume ratio
between the cell culture chamber (orange) and the OA chamber (pink) generates various concentrations of OA. Cell colonies in each cell culture
chamber were imaged under SRS microscopy. (c) Micrographs of one pair of cell culture chamber and OA chamber before (top) and after (bottom)
mixing. Here colored dye was injected into OA chamber, and clean water was injected into the cell culture chamber for mixing demonstration. The
calculation of mixing efficiency and other details are explained in the Experimental Section.
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method31 was used for computing the global threshold followed
by multidimensional filtering to generate a binary cell mask. In
some instances, cells were so confluent that their boundaries
were connected to each other. In these instances, congregated
cells may be mistaken for single cells, and the algorithm will
thus underestimate the cell number. Thus, it is very important
to control the cell density for accurate cell segmentation. Then
the LDs imaged in the same field of view were assigned to each
cell area according to their coordinates with respect to the cell
mask. As the edges of cultured adherent cells commonly spread
out, making the efficient concentration of peripheral protein
relatively low in focus, the binarized cell mask areas were often
smaller than the original cells. In order to map the
undetermined peripheral LDs to their proper cells of origin,
we adopted an algorithm of dilation which expanded the area of
LDs in succession until they were in the closest cell’s mask to
which they were assigned.

■ RESULTS AND DISCUSSION

High-Throughput Cell Culture and Microenvironment
Control on Microfluidic Chip. We used double-layer soft
lithography to build a polydimethylsiloxane (PDMS) micro-
fluidic device featuring 88 addressable cell culture chambers
(Figure 1 and Figure S1). This scalable microfluidic device was
composed of eight units. Each unit was independently operated
by integrated microvalves, making multiple types of cell culture

on the same chip accessible. In each unit, 11 cell culture
chambers were arrayed in a row, parallel with a titration row
possessing ten chemical storage chambers with variable
volumes and one “negative control” chamber (Figure 1b and
Figure S1). This design provides comprehensive observation of
the dynamics of cellular response to chemical stimulus, in our
case the free fatty acid (FFA). Each cell culture chamber
harbored a volume of 5.9 nl, which is about a million-fold
decrease from traditional 30 mm cell culture dish. The
permeability of PDMS not only ensures the sufficient exchange
of oxygen and carbon dioxide but also causes the dehydration
as the water evaporates through it. To circumvent this problem,
we added a hydration channel which encompassed the cell
culture chamber to help increase the moisture supply (Figure
1c and Figure S1b). Interface microvalves were designed to
control the communication between each pair of cell culture
chamber and the oleic acid chamber (Figure 1b and Figure
S1b). After oleic acid was injected into the titration array, the
interface microvalves were opened, and the mixing valves were
actuated. The mixing efficiency was measured by optical
absorption (see Figure S7 in the Supporting Information), and
no disturbance of cells was observed during mixing. The
microfluidic device with cell colonies was then imaged for each
chamber under SRS microscopy, followed by quantitative image
analysis.

Figure 2. SRS images processing. (a) The schematic of major steps of lipid-specific images processing. 3-D lipid-specific images were acquired at
2850 cm−1 (CH2 stretching vibration) and went through LD mask generation, signal filtering, LD connectivity recognition and quantification
(Experimental Section). (b) The schematic of major steps of protein-specific images processing. 3-D protein-specific images were acquired at 2950
cm−1 (CH3 stretching vibration) and went through cell boundary segmentation, cell mask generation, LD dilation and assignment. Automated LD
quantification at single-cell level requires the information on both CH2 and CH3 images. Other details about image processing are explained in the
Experimental Section. (c) For each LD, the intensity and size can be measured by our platform. (d) For each cell cultured in different concentrations
of OA, the total size, intensity, and number of LD can be quantified. The relationship of these LD morphology parameters among single cells can be
inferred under various culture conditions (a dot-plot shows a possible relation among those parameters, and different colors of dots represent
different culture conditions).
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Lipid Droplet Quantification through SRS Imaging.
Stimulated Raman scattering (SRS) microscopy offers high-
resolution three-dimensional label-free imaging of live cells with
chemical specificity.26,29,30 Moreover, the intensity of the SRS
signal is proportional to the number of specific chemical bonds
in the detection foci,26 making the substance quantification
straightforward. One unique and critical instrumentational
component in our SRS microscope is a long-working-distance
condenser, which allows optical signal collection through the
thick PDMS microfluidic device. Using dual-band label-free
Raman images obtained at 2850 and 2950 cm−1, representing
the spatial distribution of CH2 and CH3 groups, respectively,
we developed an automated image processing pipeline using a
linear combination of the intensity of both bands to
quantitatively characterize the number, size, and signal intensity
of intracellular LDs in single cells under various concentrations
of exogenous oleic acid (OA) with single-LD resolution and at
the single-cell level.
We first corrected unevenly distributed background of each

slice in the image stack by morphology top-hat filtering (see
Figure S5−6 in the Supporting Information). The remaining
signal was binarized to generate a lipid droplet mask (Figure
2a). To ensure the authenticity of LD signals, we further
constrained the size of objects in the mask (Figure 2a). The
processed lipid droplets mask was then used for calculating
total LDs’ size and intensity by mapping each pixel’s signal back
to the mask area and summing them up across the image stack.
To quantitatively assess the heterogeneity of LD distribution

of single cells, we obtained both images at 2850 and 2950 cm−1

in the same field of view in our system (Figure 2a,b). We used
CH3-channel images to extract the boundaries of each single
cell and then generated a cell mask for further analyses (Figure
2b). The cells were segregated, counted, and indexed with CH3-
channel images, and then, using the CH2−channel images, the
position of each LD was recorded and assigned to the cell
(Figure 2b). For those undetermined LDs, we adopted the

algorithm of dilation which expanded the area of LDs in
succession until they located in the range of a cell’s mask
(Figure 2b).
With this image-processing algorithm, the morphology

parameters of every LD, including the position, number,
volume, and intensity, were quantified (Figure 2c). In addition,
LD heterogeneity between single cells can be accessed under
various microenvironment conditions (Figure 2d). As the long-
term three-dimensional live cell imaging with SRS is not limited
by photobleaching, we were capable of recording and
quantifying the dynamic change of LDs (see Video S2 in the
Supporting Information). Thus, digital quantification of LDs by
SRS microscopy capacitates abundant information acquisition
in a high throughput fashion.

Single Lipid Droplet Distribution in HeLa. We first
applied this integrated culture-imaging system to investigate LD
growth dynamics in HeLa cells. In theory, the OA induced lipid
accumulation will be reflected in the LD formation and growth
by increasing the number, the average size, or the average
intensity of LDs, or a combination of these mechanisms. The
interplay between these LD growth mechanisms reveals
different aspects of the biochemical lipid regulation.8

Identification of the dominant mechanism therefore may help
to inform the theoretical model of LD formation and improve
our understanding of energy utilization. Thus, statistical and
quantitative investigation of the morphological change of LDs
during growth is of great importance.
We examined 11 different HeLa culture conditions with the

OA concentration ranging from 0 to 1.2 mM (Figure 3a−c).
The experiment had three replicates, yielding imaging data of
3466 live cells. In total, 98 932 single LDs (see Figure S8 in the
Supporting Information) were identified by label-free SRS
microscopy for further quantitative analyses. The size of single
LDs was consistent when cells were exposed to different
concentrations of OA (P value = 0.8923, Figure 3a). Similarly,
the intensity of single LDs (i.e., the total amount of lipid inside

Figure 3. Single lipid droplet distribution in HeLa cells. Single LD was filtered by the size and the circularity of the LD (Experimental Section). (a)
The density plot of single-LD size of HeLa cells cultured with the OA concentration ranging from 0 to 1.2 mM. (b) Single LD intensity distribution
of HeLa cells cultured from low to high concentrations of OA. Each dot denotes the intensity of a single LD. (c) The estimated LD number in HeLa
cells cultured with different concentrations of OA. (d,e) LD quantification in time lapse imaging of cells in one chamber of the chip. (d) The single-
LD size and intensity distribution. (e) The estimated number of LDs. The cropped LD masks from the beginning and the end of the time lapse video
are shown.
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each LD) between various conditions did not show significant
variation (P value = 0.8777, Figure 3b). However, compared to
the OA-free culture condition, the number of LDs in HeLa cells
increased significantly by about a factor of 10 when exposed to
1.2 mM OA (P value = 4.673 × 10−14, Figure 3c). To further
verify the LD growth dynamics in HeLa cells under the
exposure to a high concentration of FFA, we examined LD
growth in live cells over a 2 h period with time-lapse label-free
SRS imaging of a fixed field of view (FOV, see Video S2 in the
Supporting Information). The statistical analyses of these
images confirmed a constant average size and SRS intensity of
single LDs during the FFA uptake (Figure 3d), as well as a
significant increase in the number of LDs (Figure 3e). All of
these single-LD data suggest that the dominant mechanism for
storing excessive lipids in HeLa is through increasing the
number of LDs.
Single-Lipid-Droplet Distribution in Different Types

of Cells.We then asked whether different cell types had unique
responses to exogenous FFA. On a single microfluidic device,
we cultured four types of cells, HeLa, Chang liver, MCF7, and
MDA-MB-231, with titrated OA concentration in each chamber
array and two replicated arrays for each cell type (Figure 4),

yielding data from an average of about 500 cells for each type.
For all cell types, the SRS intensity (Figure 4) and size (see
Figure S9 in the Supporting Information) distribution of single
LDs exhibited an insignificant rising trend with an increase of
OA concentration. In these cells, the primary mechanism of
lipid accumulation is to increase the number of LDs with an
increase of extracellular OA (Figure 4), with Chang liver cells
displaying the most dramatic variations. This might be
attributed to the capacity of lipid uptake of hepatocytes.32

Lipid Droplet Heterogeneity with Single-Cell Reso-
lution among Different Types of Cells. All the above
measurements were performed with single-LD resolution, but
we only evaluated the “average” behavior of the cells without

considering cell-to-cell variation. LD heterogeneity between
cells has been reported in adipocytes during the process of
adipogenesis.33 For nonadipocyte cells, variability in LD
distribution has been mentioned occasionally as an interesting
phenomenon but has lacked statistical quantification. Our
method provides a general approach to quantitatively character-
ize the nonadipocytes phenotype on the basis of an accurate
assessment of many LDs in single cells. This new measurement
may lead to better understanding of the LD regulatory network
and the biochemical reaction rate associate with physical
parameters of LDs.
To eliminate the sampling bias, we acquired three-dimen-

sional dual-band SRS images of 1174 HeLa cells. For each cell,
the total lipid accumulation was estimated by the integrated
intensity of all LDs. By quantifying each LD in every single cell,
we have shown that, on average, about a 30-fold elevation of
total lipid in single cells was observed when extracellular OA
increased from 0 to 1.2 mM (P value =1.216e-4, Figure 5a).
However, a more informative observation was the LD
heterogeneity among single cells. Unsupervised clustering
shows that at low OA concentration some cells form a large
amount of LDs, whereas at high OA concentration, some cells
still keep very few LDs (Figure 5b and Figure S10). This dual-
band image processing presented cellular heterogeneity more
accurately, compared with the FOV sampling (Figure 5c). We
hence extended this method to all four cell lines. The
population of cells containing more lipid gradually increased
with the addition of OA (Figure 5d). We further investigated
the number of LDs in every single cell and found a rising trend
of more LDs with higher OA concentration (Figure 5e).
Notably, the distribution of LD number displayed an analogous
pattern with that of total lipid in single cells, supporting our
previous observation that the dominant mechanism of LD
growth for these cell types is through increased LD number.

Lipid Droplet Distribution in a Single Cells Reflects
the Culture Environment. Since single-cell LD heterogeneity
is intrinsic, we wondered if it was possible to infer the culture
microenvironment of a cell by using the morphological
parameters of LDs quantified with our platform. We adopted
a rival penalized competitive learning (RPCL)34,35 algorithm to
classify single cells on the basis of their LD number and total
lipid intensity (Figure 6a and Figures S11−S13a in the
Supporting Information). In each clustered category, the cells
have similar LD characteristics, although they might not be
cultured in the same condition. We mapped the cells cultured
in different OA concentrations in each cluster and found that
the cells with higher total lipid intensity and LD number were
more likely to have originated from the high OA culture
conditions; furthermore, the cells with lower total lipid and
fewer LDs were more likely to have grown in low OA
conditions (Figure 6b and Figures S11−S13b). This result
confirmed that although there was measurable heterogeneity,
increased concentration of the OA treatment was the driving
force behind the increased number and intensity of LDs in
single cells.

■ CONCLUSIONS

Morphological changes of cells or cell organelles usually lead to
important discoveries in biology. The quantification of
phenotype variation is hence of great importance as the precise
measurements contribute to the interpretation of underlying
biological mechanisms.

Figure 4. Single-LD distribution among four types of cells (Hela,
Chang Liver, MCF7 and MDA-MB-231. All data shown here was
calculated from cells grown on the same chip. The lipid-specific images
of four cells were shown in the top panel. The middle panel
demonstrates the single-LD intensity distribution, and the bottom
panels show the estimated LD numbers.
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In this report, we coupled a microfluidic device with
stimulated Raman scattering microscopy for the in situ analysis
of lipid droplet morphology in live cells. The microfluidic
platform enables high-throughput cell culture under varying
conditions; multiple cell type handling; automated, parallel, and
precise delivery of chemicals; and smaller demand for cell
number. Additionally, nonlinear optical imaging offers advan-
tages for chemical characterization of single cells.36 The

detection specificity of lipid droplet by SRS microscopy is
high,37 and the label-free feature of SRS microscopy allows
long-term observation of live cells under nearly physiological
conditions. The spatial resolution of SRS microscopy is
diffraction limited and comparable with other light microscopy.
Compared with fluorescent labeling, the characteristics of SRS
microscopy makes the quantification of lipid more precise and
straightforward as the intensity of SRS signal is proportional to

Figure 5. Cell-to-cell variation of LD distribution. (a) The total LD intensity distribution in 1176 HeLa cells under different culture conditions. Each
dot denotes the total LD intensity in one cell. (b) Unsupervised hierarchical clustering of HeLa cells based on the LD number, intensity, and the
concentration of OA in culture. Each column of the heatmap represents one cell. Though the consistency between LD morphology parameters and
the OA concentration existed (red), different patterns of the heatmap show that some cells with high values of LD number and intensity were found
to be cultured in low concentration of OA and vice versa (black). (c) The comparison of LD intensity distribution between single HeLa cells and
averaged “single” cells. (d,e) The distribution of LD intensity and number in Hela cells (blue), Chang liver cells (green), MCF7 cells (red), and
MDA-MB-231 cells (purple).

Figure 6. Lipid droplet distribution in single cells reflects the culture environment. (a) Unsupervised RPCL clustering of single HeLa cells. Each dot
represents one cell. Clusters are indicated by color, and the intersection of vertical and horizontal lines indicate cluster centers. Clustering tags are
shown beneath the cluster centers. (b) In each cluster, cells cultured in each concentration of OA were counted and plotted to illustrate the
dominant groups of the original culture environment.
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the number of chemical bonds in the detection foci. To avoid
obscuring the variable response from individual cells by
averaged measurement of a large population, lipid droplet
analysis with single-cell resolution is achieved by dual-channel
imaging and automated image processing. We applied this
platform to investigate lipid uptake when cells were under the
stimulation of different concentrations of oleic acid.
The combination of SRS microscopy with microfluidic

technology offers the capability of precise quantification of
cell phenotypes which are represented in lipid droplet
morphology. This platform will be powerful when applied to
lipid-metabolism-related culture-condition optimization and
drug-response screening, as it enables the measurements of
multiple cell types’ response to multiple stimuli with complex
temporal inputs at the single-cell level. Moreover, the
phenotype screening system described here is ideally suited
to combine with genotype analysis tools for more thorough
investigation. For example, some microfluidic devices have been
reported to be applied in the whole-transcriptome sequenc-
ing.38,39 The incorporation of the phenotype characterizing and
the sequencing microfluidic chip and imaging can, in theory,
achieve in situ cell clone selection and sequencing with less
external interference and human operation bias. This improve-
ment has great importance for untangling basic molecular
evidence and accelerating progress in medicine and biotechnol-
ogy.
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