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Abstract

The paired measurement of RNA and surface protein abundance in single cells with1

CITE-seq is a promising approach to connect transcriptional variation with cell2

phenotypes and functions. However, each data modality exhibits unique technical3

biases, making it challenging to conduct a joint analysis and combine these two4

views into a unified representation of cell state. Here we present Total Variational5

Inference (totalVI), a framework for the joint probabilistic analysis of paired RNA6

and protein data from single cells. totalVI probabilistically represents the data as7

a composite of biological and technical factors such as limited sensitivity of the8

RNA data, background in the protein data, and batch effects. To evaluate totalVI,9

we performed CITE-seq on immune cells from murine spleen and lymph nodes10

with biological replicates and with different antibody panels measuring over 10011

surface proteins. With this dataset, we demonstrate that totalVI provides a cohesive12

solution for common analysis tasks like the integration of datasets with matched13

or unmatched protein panels, dimensionality reduction, clustering, evaluation of14

correlations between molecules, and differential expression testing. totalVI enables15

scalable, end-to-end analysis of paired RNA and protein data from single cells and16

is available as open-source software.17



1 Introduction18

The advance of technologies for quantitative, high-throughput measurement of the molecular com-19

position of single cells is continuously expanding our understanding of cell ontology, state, and20

function [1–3]. Flow cytometry has set the gold standard for classifying cell types and phenotypic21

states by quantifying the abundance of small panels of marker proteins on the surface of each cell.22

More recently, unbiased whole-transcriptome profiling with single-cell RNA sequencing (scRNA-seq)23

has enabled more comprehensive characterization of cell types [4] and a mechanistic understanding24

of molecular processes in single cells [5]. Flow cytometry and scRNA-seq offer different views of25

biological systems at the single-cell level, each with unique insights and limitations. In flow cytometry,26

for example, fluorescent detection of protein abundance limits how many proteins can be probed27

simultaneously, whereas scRNA-seq only provides a proxy for the functional information contained28

in the proteome that does not necessarily reflect protein abundance [6, 7]. The development of29

techniques such as CITE-seq [8, 9] for paired measurement of RNA and surface proteins from the30

same cell now provides the opportunity to jointly leverage both types of information. An important31

feature of CITE-seq is that it quantifies protein abundance by sequencing barcoded antibodies. This32

significantly increases the number of proteins that can be measured simultaneously relative to flow33

cytometry and provides the potential to approach proteome-wide profiling of single cells.34

Such multi-omic single-cell measurements have the power to provide many new biological insights.35

First, connecting the extensive literature on cell surface markers with whole-transcriptome profiles36

could facilitate more consistent and robust annotations of cell types. More fundamentally, having37

access to a comprehensive molecular profile of each cell could enable a more nuanced, multifaceted38

understanding of its state [10, 11]. Furthermore, combining these two modalities presents new39

opportunities such as identifying novel surface markers for new or known cell types, estimating the40

rates of protein processing [12], and exploring how signals may be received through the cell’s outer41

membrane and transmitted to produce transcriptional changes. A joint analysis that combines the42

transcriptomic and proteomic views of a cell could help achieve these goals by using information from43

both molecular measurements to inform all downstream analysis.44

However, combining the information contained in both molecular measurements poses multiple45

challenges. For example, while the RNA and protein counts observed in CITE-seq data reflect46

biological factors related to the cell’s underlying state, both measurements contain technical biases47

that are specific to each modality, making normalization difficult. The RNA data suffer from48

noise, limited sensitivity, and variation in sequencing depth – factors that have been addressed49

by a flourishing body of probabilistic methods [13–16]. The protein data, while less sparse than50

RNA, tend to be obscured by noise and background, which is caused by the detection of ambient or51

non-specifically bound antibodies. Next, there is the modeling challenge of combining the distinct52

sets of information and constructing a unified representation for each cell [17, 18]. Finally, there is the53

challenge of linking a joint data representation to downstream analysis tasks such as dimensionality54

reduction, clustering, differential expression, and dataset integration. As large-scale community55

efforts such as the Human Cell Atlas (HCA; [4]) begin to include CITE-seq datasets, these tasks56

become increasingly challenging because different experiments may use different antibody panels.57

This is problematic because algorithms designed for these tasks often require direct correspondence58

of features (genes and proteins) between datasets, which would entail computationally intersecting59

antibody panels and subsequently, a loss of some or all of the protein information.60

These challenges present a need for a scalable, joint statistical model of RNA and protein measurements.61

Most CITE-seq studies thus far have limited their analysis such that variability between cells62

was represented by only one modality, while the other modality served to validate and aid with63

interpretation post-hoc [19–21]. For instance, two recent studies [19, 20] used the RNA data to cluster64

cells, and then the protein data to derive cluster annotations. Furthermore, statistical methods that65

have been applied to the protein data do not adequately address the technical factors inherent to66

this measurement.67

Here, we present totalVI (Total Variational Inference), a deep generative model for paired RNA-protein68

data analysis that addresses these challenges simultaneously. totalVI learns a joint probabilistic69

representation of RNA and protein measurements that aims to account for the distinct noise and70

technical biases of each modality as well as batch effects. For RNA, totalVI uses a modeling strategy71

similar to our previous work on scRNA-seq (scVI; [13]). For proteins, totalVI introduces a new model72

that separates the protein signal into background and foreground components. It then estimates73
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the probability that the counts of a protein observed in any given cell reflect protein abundance on74

the cell surface rather than technical artifacts caused by ambient antibodies or non-specific binding.75

The probabilistic representations learned by totalVI are built on a joint low-dimensional view of the76

RNA and protein data that is derived using neural networks. This joint view captures the biological77

variability between cells and can be interpreted as representing the underlying state of each cell. As78

such, this single low-dimensional representation of cell state reflects the coordinated regulation of79

transcription and translation that produces both molecules in the same cell.80

The totalVI joint probabilistic model provides a cohesive solution for common analysis tasks such as81

dimensionality reduction, clustering, evaluation of correlations between genes and/or proteins, and82

differential expression testing. Prior to conducting these procedures, totalVI can be used for dataset83

integration, even in the case of partially- or non-overlapping protein panels, which result in “missing”84

protein entries. In addition to the integration of two or more input datasets, totalVI can impute the85

expression of proteins that are missing in certain samples, including ones with no measured proteins86

such as those from scRNA-seq experiments. Finally, while totalVI is based on deep neural networks,87

it provides a way to relate the coordinates of its latent dimensions to the expression of specific genes88

and proteins, thus affording interpretability and highlighting interesting trends in the data. In each89

of these tasks, totalVI accounts for batch effects, protein background, and other nuisance factors to90

enable more accurate analysis.91

To evaluate the performance of totalVI, we conducted a series of CITE-seq experiments on murine92

spleen and lymph nodes that were designed to include complications like biological replicates,93

different protein panels, and up to 208 measured proteins per experiment. Using this data along94

with several public datasets, we demonstrated that totalVI effectively decouples protein foreground95

and background, integrates datasets with either matched or unmatched protein panels, imputes96

the measurements of proteins that were not included in one of the panels, and detects differential97

expression of both RNA and proteins. We demonstrated that totalVI compares favorably to the98

state of the art methods in each of these tasks (in cases where such a method is available), and that99

it scales to large dataset sizes. We applied totalVI to characterize the heterogeneity of B cells in100

the spleen and lymph nodes with paired RNA and protein information. totalVI and its downstream101

analysis procedures are available as open source software, which can be readily used as an end-to-end102

analytical solution for the increasingly common CITE-seq technology.103

2 Results104

2.1 The totalVI model105

totalVI uses a probabilistic latent variable model [22] to represent the uncertainty in the observed106

RNA and protein counts from a CITE-seq experiment as a composite of biological and technical107

sources of variation. The input to totalVI consists of the matrices of RNA and protein unique108

molecular identifier (UMI) counts (Figure 1a). Categorical covariates such as experimental batch109

or patient are optional inputs used for integrating datasets, and referred to henceforth as “batch”.110

totalVI can integrate datasets with different antibody panels (including integration with standard111

scRNA-seq), and use its probabilistic model to impute any missing protein measurements.112

The output of totalVI consists of two components that can be used for downstream analysis. The113

first component encodes each cell as a distribution in an unobserved (latent) low-dimensional space114

that represents the information contained in the RNA and protein data and controls for their115

respective noise properties. The second component provides a way to estimate the parameters of the116

distributions that underlie the observed RNA and protein measurements (i.e., likelihoods) given a117

cell’s latent representation. These distributions explicitly account for nuisance factors in the observed118

data such as sequencing depth, protein background, and batch effects (Figure 1b).119

To model the RNA data, totalVI posits that for each gene g and cell n the number of observed120

transcripts, xng, follows a negative binomial distribution, which has been shown to adequately handle121

the limited sensitivity and over-dispersion that are characteristic of this data [23]. The mean of the122

negative binomial, `nρng, depends on the cell’s batch, denoted sn, and two latent variables. The first123

variable, `n, represents cell size and sequencing depth and follows a lognormal distribution. The124

second variable, zn, is a low-dimensional vector (here, 20 dimensions), which follows a logistic normal125

distribution and can be interpreted as the underlying biological state of the cell. A neural network126
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Figure 1: Schematic of a CITE-seq data analysis pipeline with totalVI. a, A CITE-seq experiment
simultaneously measures RNA and surface proteins in single cells, producing paired count matrices for RNA
and proteins. These matrices, along with an optional matrix containing sample-level categorical covariates
(batch), are the input to totalVI, which concomitantly normalizes the data and learns a joint representation
of the data that is suitable for downstream analysis tasks. b, Schematic of totalVI model. The RNA counts,
protein counts, and batch for each cell n are jointly transformed by an encoder neural network into the
parameters of the posterior distributions for zn, a low-dimensional representation of cell state, βn, the protein
background mean indexed by protein, and `n, an RNA size factor. The space of all joint cell representations
(latent space) is independent of the batch and is used for dataset integration and cell stratification tasks.
Next, a decoder neural network maps samples from the posterior distribution of zn, along with the batch, sn,
to parameters of a negative binomial distribution for each gene and a negative binomial mixture for each
protein, which contains a foreground (FG) and background (BG) component (Methods 4). These parameters
are used for downstream analysis tasks.

maps zn and sn to ρng, which represents the normalized gene expression. This modeling strategy for127

the RNA data is closely related to previous work in this domain (e.g., scVI [13], ZINB-WAVE [16],128

and DCA [24]).129

For the protein data, totalVI posits that the number of molecules for each protein t and cell n, ynt130

follows a two-component negative binomial mixture distribution. The mixture accounts for the fact131

that the observed protein counts may correspond to either real protein abundance on the cell surface,132

or to technical artifacts like ambient antibodies and non-specific binding. The mean of this mixture133

depends on zn (similarly to RNA) and on another latent variable, βnt, which follows a lognormal134

distribution and describes a baseline level of protein counts due to background. An additional neural135

network maps zn and sn to the protein likelihood parameters αn and πn, which represent an offset136

for the protein foreground mean, and the probability that the observed counts were generated from137
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the background component, respectively.138

totalVI optimizes the parameters of both of its components simultaneously using the variational139

autoencoder (VAE) framework [25]. In the first component, “encoder” neural networks are trained140

to map the raw observations to the parameters of the approximate posterior distributions of the141

latent variables zn, `n, and βn. In the second component, the previously described “decoder” neural142

networks are trained to map zn and sn to the RNA and protein likelihood parameters ρn, αn, and143

πn. The inverse dispersion parameters for genes θg and proteins φt are model parameters learned144

during inference. Accordingly, totalVI uses highly efficient techniques for stochastic optimization of145

VAEs, which makes it appropriate for the scale of CITE-seq data.146

The latent variable zn in the first component of totalVI is particularly important for downstream147

analysis. As zn is linked to the mean of the likelihood for each protein and each gene in each cell148

by a neural network, its approximate posterior, q(zn | xn, yn, sn), captures information contained149

in both RNA and protein measurements. This distribution should also be robust to the nuisance150

factors accounted for, such as negative binomial noise and batch effects. We used the mean of zn151

under the approximate posterior as an integrated, joint view of cell state, which we then used as152

input to clustering and visualization algorithms. Additionally, we modeled zn with a logistic normal153

distribution, meaning each zn resides in a convex polytope amenable to archetypal analysis [26, 27].154

Such an analysis connects each latent dimension to the expression of genes and proteins and aids155

with the interpretation of the model.156

Other downstream tasks specific to genes and proteins (collectively referred to as features), are linked157

to the likelihood parameters from the second component of totalVI. In the following, we demonstrate158

how to use this part of the model in a range of tasks such as differential expression testing, missing159

protein imputation, and measurement denoising. A detailed specification of the model, along with160

further mathematical descriptions of the quantities used in downstream tasks is in Methods 4.161

2.2 CITE-seq profiling of murine spleen and lymph nodes162

We conducted a series of CITE-seq experiments that were designed to test the performance of totalVI163

on a variety of tasks while handling issues related to large protein panels that can vary between164

different batches. As a case study, we profiled murine spleen and lymph nodes, which contain165

heterogeneous immune cell populations that are well-characterized by surface protein markers. The166

CITE-seq experiments were executed on the 10x Genomics Chromium microfluidic platform using167

Biolegend TotalSeq-A antibodies.168

In these experiments, cells were collected from two wild-type mice that were processed in two169

different experimental runs to serve as biological replicates (Methods 4.4). For each experimental run170

(completed on separate days), we stained cells from one mouse with two different panels of barcoded171

antibodies: the first contained 111 antibodies and the second contained 208 antibodies, of which the172

111 antibodies were a subset (Supplementary Data: Antibodies). Spleen and lymph node cells were173

stained separately with the same antibody panels plus an additional hashtag antibody such that the174

tissues could be demultiplexed [28]. Cells stained with the same panel were pooled in the same 10x175

lane, resulting in four lanes (two per run).176

We refer to these four spleen/lymph node datasets by their protein panel and experimental day:177

SLN111-D1, SLN208-D1, SLN111-D2, SLN208-D2. We refer to the combination of the four as SLN-all178

(experimental design in Table 1). After pre-processing and filtering, these datasets contained a total179

of 32,648 cells with approximately 3,300 UMIs per cell for RNA and 2,800 UMIs per cell for proteins180

(Methods 4.6).181

2.3 totalVI is scalable and fits CITE-seq data well182

The usefulness of probabilistic models like totalVI depends on how well they fit the observed data.183

Furthermore, they should generalize to unobserved data (i.e., not overfit) and scale to a realistic184

range of input sizes. Here we verify that totalVI satisfies these prerequisites.185

We first estimated how well totalVI fits CITE-seq data that was available to it during training using186

posterior predictive checks (PPC; [14, 29]). To conduct PPCs, we generated replicated datasets187

(i.e., posterior predictive samples) by sampling from the fitted model (Methods 4.7). One replicated188

dataset is constructed by passing each observed cell n through the encoder part of the model,189
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sampling from the posterior approximation of its latent variables (e.g., zn), and then sampling from190

the conditional distributions for each gene and protein given the latent variables (Figure 1b). As191

totalVI directly models the count data, the replicated datasets generated with this procedure should192

maintain the properties of the observed data. To that end, we assessed how well totalVI preserves193

the mean-variance relationship of the data by measuring the similarity between the coefficient of194

variation (CV) per gene and protein on the replicated and the raw data.195

We then evaluated how well totalVI generalizes to data that was not available during training (i.e., a196

set of held-out cells). To do so, we generated replicated datasets conditioned on the held-out cells,197

and computed two somewhat opposing metrics of predictive performance. First, we assessed how198

well the average replicated data set matched the observed held-out data via mean absolute error.199

Second, we quantified how well the interval of values from replicated data sets covered the observed200

held-out data values (calibration error; [30]). We also computed the held-out predictive log-likelihood201

of the data. All of these held-out metrics were computed separately for genes and proteins.202

As a baseline, we compared totalVI to factor analysis (FA), which can be viewed as a simplified203

version of totalVI. For instance, in FA, the mapping between the latent space and data space is204

specified by a linear function and the conditional distribution for each feature is Gaussian. As an205

additional control, we compared to scVI [13], which was restricted to the RNA part of the data. We206

expected the goodness of fit for totalVI and scVI on just the RNA part of the data to be comparable,207

as they share a similar generative model and neural network architecture.208

Our evaluation relied on fitting the models to several CITE-seq datasets, spanning different species209

and tissues, including peripheral blood mononuclear cells (PBMC10k; [31]) and mucosa-associated210

lymphoid tissue (MALT; [32]) from humans, and our novel murine spleen and lymph node data211

(SLN111-D1). Across all datasets, totalVI performed best in terms of preserving the mean-variance212

relationship of genes and proteins in the raw data (Supplementary Figure S1a). On the held-213

out protein data, totalVI outperformed FA in both the mean absolute error and calibration error214

metrics. On the held-out RNA data, totalVI and scVI were largely comparable and outperformed FA215

(Supplementary Figure S1b-d).216

To assess the scalability of totalVI, we concatenated all of our spleen and lymph node data (SLN-all)217

and recorded the training time for different sizes of subsets of this data. totalVI and scVI (which218

processes only RNA data) had similar dependence between run time and input size (Supplementary219

Figure S1e). Furthermore, we observed that totalVI can readily handle large data sets, for instance,220

processing the complete set of approximately 33,000 cells with over 4,100 features in less than an221

hour.222

Overall, these results demonstrate that totalVI is a scalable probabilistic model that provides an accu-223

rate representation of CITE-seq data. With these prerequisites satisfied, we turned to benchmarking224

particular aspects of the model as they relate to common single-cell analysis tasks.225

2.4 totalVI identifies and corrects for protein background226

To analyze protein data in an accurate and quantitative manner, it is necessary to distinguish between227

true biological signal and technical bias in the protein measurement. Background is a type of technical228

bias that has previously been reported for antibody-based measurements and has been observed229

in both flow cytometry [33] and sequencing-based [8, 9] studies. In CITE-seq data, protein counts230

contain non-negligible background, the extent of which can be observed in the detection of counts231

for nearly every protein in all cells. This background arises experimentally from a combination of232

unbound ambient antibodies, which can be detected in empty droplets, and non-specific antibody233

binding, which can be detected in cells with no expected expression of a protein, such as CD19 in T234

cells (Methods 4.8, Supplementary Figure S2a-c, g). Recent methods have described background from235

ambient RNA [34, 35], but the presence of background is more pronounced in protein measurements236

(Supplementary Figure S2d-f). Failure to account for this protein background could lead to erroneous237

conclusions in downstream analyses. For instance, differential expression tests might report false238

positives driven by variation in background rather than by the biological signal of interest, as well as239

false negatives if high levels of background obscure low levels of signal.240

Accurate identification of protein foreground and background is a prerequisite for denoising the241

protein measurements. Previous studies of CITE-seq data derived a single decision rule for every242

protein, specifying the minimal number of counts required to be considered foreground. In one study,243
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Figure 2: totalVI identifies and corrects for protein background. totalVI was applied to the
SLN111-D1 dataset. a-c, CD20 protein (encoded by Ms4a1 RNA). (a) totalVI foreground probability vs
log(protein counts+ 1). Vertical line denotes protein foreground/background cutoff determined by a GMM.
Horizontal lines denote totalVI foreground probability of 0.2 and 0.8. Cells with foreground probability
greater than 0.8 or less than 0.2 are colored by quadrant, while the remaining cells are gray. (b) UMAP
plots of the totalVI latent space. Each quadrant contains cells from the corresponding quadrant of (a) in
color with the remaining cells in gray. (c) RNA expression (log library-size normalized; Methods 4.8) for
cells colored in (a). d-f, Same as (a-c), but for CD28 protein (encoded by Cd28 RNA). g, h, Distributions
of log(protein counts+ 1) (g) and log(totalVI denoised protein+ 1) (h) for CD20 protein in B and T cells.
y-axis is truncated at 3. i, j, Same as (g, h), but for CD28 protein.

the boundary was based on spiked-in negative control cells from another species, relying on the244

assumption that cross-reactivity of antibodies between species is minimal [8]. Another study fit a245
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Gaussian mixture model (GMM) to distinguish a background and foreground component for each246

protein [36]. Using the same boundary for all cells, however, relies on the assumptions that all cells247

are subject to a similar background distribution of the protein in question and, for the commonly248

applied case of a two-component GMM, that the foreground component is comparable across cell249

types.250

Since these assumptions might not hold in all cases, totalVI instead models protein background as251

cell- and protein-specific. In totalVI, the estimate of protein background accounts not only for the252

observed levels of a given protein in the cell in question, but also for the overall transcriptomic and253

proteomic profile of that cell. To do this, totalVI models each protein measurement as a mixture254

of a foreground and background component that depends on the cell’s representation in the latent255

space (Methods 4.1). The mixture is weighted by the parameter π, which can be interpreted as256

the probability that the counts of a protein in a given cell came from the background component257

(Figure 1b, Methods 4.8).258

As a way of evaluating totalVI’s ability to quantitatively identify protein background using π, we259

made use of common marker proteins, whose counts are expected to come from the foreground260

component in some cell types and from the background component in others. For example, a high261

foreground probability for CD4 could be used as a positive predictor of CD4 T cells. We tested262

how well the foreground probability estimates (1 − π) of each marker protein in the SLN111-D1263

dataset performed at classifying major cell types by computing the area under the receiver operating264

characteristic curve (ROC AUC), using manual cell type annotations as the true labels. As a baseline265

for comparison, we used the assignment probabilities from a two-component Gaussian mixture model266

(GMM) fit on all cells for each log-transformed protein (Methods 4.8).267

For nine out of eleven known marker proteins, both totalVI and the GMM performed well at classifying268

cell types by protein foreground probability (ROC AUC > 0.97; Supplementary Figure S3a). For these269

marker proteins, distinguishing foreground and background components was relatively straightforward,270

and foreground and background levels appeared to be similar across all cells. The B cell marker271

CD19 was one example where the distributions of foreground and background protein expression272

were easily separated (Supplementary Figures S2a and S4a-d).273

Other proteins, however, were not as simple, and had highly overlapping distributions of foreground274

and background counts (Supplementary Figure S2b, c). For two of these more challenging proteins,275

namely, the B cell marker CD20 and the T cell marker CD28, totalVI noticeably outperformed the276

GMM (Supplementary Figure S3b). These two proteins are illustrative of two types of errors that277

can be made when using a single decision boundary on all cells to distinguish protein foreground278

from background.279

In the case of CD20 (encoded by Ms4a1 RNA), the GMM set a high cutoff on protein counts that280

resulted in numerous false negatives (Methods 4.8). Among the cells below the cutoff (considered281

CD20 negative by the GMM), totalVI distinguished cells with high and low foreground probability282

(Figure 2a). The cells with high foreground probability clustered with B cells in the totalVI latent283

space and had high Ms4a1 expression, confirming their identity as B cells. On the other hand, cells284

with similarly low protein expression but with low probability foreground clustered with T cells and285

had no Ms4a1 expression (Figure 2a-c).286

In the case of CD28, the GMM set a low cutoff on protein counts that resulted in numerous false287

positives. Among the cells above the GMM cutoff, totalVI distinguished the cells with high foreground288

probability (primarily T cells) from the cells with low foreground probability (primarily B cells)289

(Figure 2d-f). Across all proteins, the totalVI foreground probability tended to fall near zero or one290

(Supplementary Figure S4e).291

Despite using a two-component mixture, totalVI can also decouple background and foreground for292

proteins that have greater than two modes of expression globally. For example, totalVI correctly293

decoupled background and foreground for CD4 in peripheral blood mononuclear cells, which globally294

follows a trimodal distribution (Methods 4.8, Supplementary Figure S5a, b). Through the above295

examples, we see that by leveraging information from all cells, genes, and proteins, totalVI is capable296

of identifying protein foreground and background in a way that more accurately reflects cell state297

than a single decision boundary on protein expression.298

To illustrate background identification, we demonstrated that decoupling foreground from background299

can be used to “classify” a cell as expressing or not expressing a certain protein. For downstream300
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analysis, totalVI uses π in a more quantitative manner to remove protein background. Specifically,301

totalVI can denoise the protein data by setting the background component to zero, while also302

accounting for the measurement uncertainty of the foreground component. This effectively subtracts303

the expected amount of background from the overall expected expression (Methods 4.3 and 4.8,304

Figure 2g-j, Supplementary Figure S5f, g).305

Statistics computed on the expectation of denoised values may be biased due to spurious relationships306

between features that arise in the denoising process [37]. We used the expectation of denoised values for307

visualization (Supplementary Figure S5c-e). However, to address this concern for statistical analyses,308

the totalVI differential expression test uses distributions over the denoised values as opposed to testing309

directly on a denoised data matrix; we further describe this procedure below. For other analyses310

focused on the relationships between features, we developed a novel sampling method for denoised311

data that controls for nuisance variation while avoiding denoising-induced artifacts (Methods 4.3). We312

applied this method to construct feature-feature correlation matrices and found that totalVI preserved313

the independence of negative control genes, while the naive calculation of correlations on expected314

denoised values generated false positive correlations (Methods 4.9, Supplementary Figure S6a, b, d,315

e). These results lend confidence that downstream analysis with totalVI is not subject to spurious316

feature relationships that can arise from data denoising. When observing the correlations between317

proteins and their encoding RNA, we found that totalVI correlations were higher in magnitude318

than raw correlations across the majority of RNA-protein pairs (Supplementary Figure S6c, f). It is319

worth noting that the totalVI model has no explicit information about the relationship between any320

RNA-protein pairs, such that any correlation learned by the model is not predetermined by known321

RNA-protein relationships. In the sections below, we demonstrate how denoising protein expression322

within totalVI results in more accurate downstream analysis.323

2.5 Integration of multiple datasets324

As the number of CITE-seq studies grows, we anticipate increased interest in performing integrated325

analyses of datasets from different labs, experiments, and technologies; however, these categorical326

covariates often confound the shared biological signal between datasets. In the case of scRNA-seq327

data, methods like Seurat v3 [38] and Scanorama [39] were designed to correct expression values for328

these so-called batch effects and have demonstrated state-of-the-art results. These methods can also329

be extended to integrate CITE-seq datasets, but their application is limited. First, their corrected330

values are not designed to be used for differential expression testing or other related downstream331

tasks, since the uncertainty of the correction is not considered. Second, they require each dataset to332

have the same features, which may not be the case due to differences in antibody panels between333

datasets.334

Integration is built into the totalVI model via an assumption of independence between the latent335

space and the batch. Consequently, the batch is treated as a covariate in the totalVI generative model,336

allowing for a statistically robust integration procedure. Furthermore, totalVI can handle datasets337

with different antibody panels due to a novel modification in which datasets with different proteins338

are processed using a fixed neural network architecture designed for the union of the proteins [40].339

totalVI can also impute the expression values of missing proteins by making out-of-sample predictions,340

which incorporates the information learned from those proteins in the batches in which they were341

observed (Methods 4.3, [41]).342

We benchmarked totalVI against state-of-the-art methods using general metrics designed to test how343

well datasets are mixed and how well the original structure of each dataset is maintained. We used344

these metrics to demonstrate that totalVI can effectively integrate datasets with equal and unequal345

protein panels. Finally, we benchmarked totalVI’s accuracy of predicting protein expression in cases346

where measurements are available in only one of the datasets.347

We considered three metrics to quantify integration performance. First, the latent mixing metric348

quantifies how well the different batches mix in the low-dimensional latent space by considering the349

frequency of observed batches within local cell neighborhoods [42]. The second performance criterion,350

the measurement mixing metric, describes how well the different batches mix in the high-dimensional351

data space. This test uses the Mann-Whitney U statistic to evaluate the extent to which the352

expression of a given feature is systematically higher in one of the batches post-integration. Finally,353

as the mixing metrics could be trivially optimized by randomizing the data, we also tested how well354

the patterns of feature expression in every individual dataset are preserved in the integrated dataset.355
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Figure 3: Benchmarking of integration methods for CITE-seq data. a-c, UMAP plots of SLN111-D1
and SLN208-D2 with no integration (PCA of paired data with intersection of protein panels), and after
integration with totalVI-intersect, in which the protein panels were intersected, and totalVI-union, in which
the unequal protein panels were preserved, colored by dataset. d, e, Performance of integration methods
based on three metrics: (d) latent mixing metric, feature retention metric and (e) measurement mixing
metric (higher values are better for each; Methods 4.10). f, UMAP plot of SLN111-D1 integrated with
SLN111-D2 (proteins held out) by totalVI. g, UMAP plots colored by totalVI imputed and observed protein
expression (log scale) of key cell type markers (range 0-99th percentile of held-out values for each protein). h,
Pearson correlation of imputed versus observed protein expression (log scale) for totalVI-union and Seurat v3
colored by average expression of the protein.

In particular, we used the idea of autocorrelation, which measures for each feature the extent to356

which cells that are near each other in latent space have a similar expression level [43]. The feature357

retention metric summarizes the difference in the autocorrelation of features computed using the358

latent space of each individual dataset versus the integrated latent space. Thus, it tests whether the359

integrated latent space captures similar genes and proteins as the latent space of each dataset in360

isolation (Methods 4.10).361

We demonstrated totalVI’s integration capabilities on two of the spleen and lymph node datasets362
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(SLN111-D1, SLN208-D2), which were generated with different panels containing either 111 or 208363

antibodies (111 is a subset of the 208). For these datasets, a linear dimensionality reduction with364

principal components analysis (PCA) revealed batch as a major source of variation (Figure 3a). We365

compared totalVI to Seurat v3 [38] and Scanorama [39], which, like totalVI, produce both batch366

corrected expression values and an integrated latent space. We benchmarked two versions of totalVI367

– totalVI-intersect, in which protein features were intersected, and totalVI-union, in which the union368

of protein features was used as input.369

For each of these methods, we computed UMAP embeddings [44] of their latent spaces (Figure 3b,370

c), as well as the three evaluation metrics. Generally, we found that after integration, cells of similar371

types were co-located in the latent space, as evidenced by the shared expression of key marker proteins372

like CD4, CD8a, and CD19 (Supplementary Figure S7). In the latent mixing and feature retention373

metrics, totalVI outperformed the other methods, while comparing favorably in the measurement374

mixing metric (Figure 3d, e). totalVI-union and totalVI-intersect performed similarly, indicating that375

the presence of missing data did not diminish totalVI’s integration capabilities. We also repeated376

this analysis on two public datasets of PBMCs (PBMC10k [31], PBMC5k [45]) and observed similar377

performance for totalVI (Supplementary Figure S8a-f).378

Since totalVI-union can integrate datasets with different protein panels, we reasoned it would be379

feasible to integrate a CITE-seq dataset with a standard scRNA-seq dataset that has not measured380

proteins and impute the missing protein measurements. We assessed this by integrating SLN111-D1381

and SLN111-D2, where we held out the proteins of SLN111-D2. We first observed that totalVI can382

learn a biologically meaningful integrated latent representation despite the large amount of missing383

data (Figure 3f). Indeed, the localization of observed protein expression in the latent space revealed384

the same broad immune cell types like B cells, CD4 T cells, CD8 T cells, Tregs, and myeloid cells.385

Next, we decoded the latent representations of cells from SLN111-D2 conditioned on them being386

in SLN111-D1, where protein data was observed, and reported the mean of the negative binomial387

mixture for each protein as the imputed protein values (Methods 4.3). For key cell type marker388

proteins, totalVI-imputed proteins shared similar patterns of expression as the held-out observed389

proteins (Figure 3g).390

To further quantify imputation accuracy, we computed the Pearson correlation between imputed and391

observed protein values on the log scale. We did not correct for background in this analysis since392

the comparison is to the observed data. We compared totalVI to Seurat v3, which imputes protein393

values based on smoothing of protein values from mutual nearest RNA neighbors. totalVI had higher394

correlation than Seurat v3 for the majority of the proteins (Figure 3h). As expected, imputation was395

inaccurate in both methods for proteins with low counts, which may only have foreground signal in396

few cells, or were poorly detected. We observed similar results when applying this task to PBMCs397

(Supplementary Figure S8g, h). Taken together, these results suggest that imputed proteins may be398

used as a proxy for real protein measurements in other downstream tasks.399

2.6 Differential expression400

totalVI can leverage its estimates of uncertainty from a single model fit to detect differentially401

expressed features between sets of cells while controlling for noise and other modeled technical biases.402

In a test between two sets of cells, totalVI estimates the posterior odds that any feature is differentially403

expressed (using Bayes factors [13, 46, 47]; Methods 4.3). Here, the Bayesian equivalent of a null404

hypothesis for a particular feature is that the log fold change (LFC) of expression between the two405

sets is contained within a small interval centered at zero. Likewise, the probability that the LFC is406

outside this interval is considered the probability of differential expression (DE). The Bayes factor407

thus quantifies the degree to which the data support the hypothesis that a feature is differentially408

expressed versus the hypothesis that it is not differentially expressed. A distribution over the LFC is409

estimated using posterior samples of zn and the subsequent data likelihood parameters (Figure 1b),410

adjusted for sequencing depth (RNA), background signal (protein), and batch effects (both). We411

used the median of this LFC distribution as an estimate of effect size.412

To evaluate totalVI as a framework for DE analysis in the common scenario of multiple experiments,413

we integrated all four spleen and lymph node datasets (SLN-all; totalVI-intersect). totalVI provided414

a descriptive representation of this data, as clusters of cells in the joint latent space corresponded415

to immune cell types or states. Indeed, we found consistent differences in the expression of known416

immune cell markers, thus allowing us to manually annotate each cluster with cell type labels417
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Figure 4: totalVI identifies differentially expressed genes and proteins. totalVI intersect was applied
to the SLN-all dataset. a, UMAP plot of SLN-all, after clustering and annotating the data (Methods 4.11).
a, b, Heatmap of markers derived from one-vs-all tests for (a) RNA and (b) proteins. For each cell type, we
display the top three protein markers and top two RNA markers in terms of LFC. d, Volcano plot of protein
differential expression test between ICOS-high Tregs and CD4 T cells for a Welch’s t-test and Wilcoxon
rank-sum test. Putative positives and negatives are denoted by green and orange arrows, respectively.
Significant proteins are colored in grey, all others are in black. e, totalVI protein expression for proteins
(columns) upregulated in ICOS-high Tregs versus CD4 T cells. Cells (rows) are ordered by cluster, and
subsampled to be equal in number per cluster. Columns are normalized in the range [0, 1]. The left section in
the heatmap contains all the proteins called differentially expressed by totalVI with a positive log fold change.
Proteins are sorted by Bayes factor (significance). The rightmost section contains the putative negatives,
which are not called differentially expressed by totalVI. f, Comparison of log fold changes estimated by
totalVI and observed in the raw data from a one-vs-all test of CD4 T cells.
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(Figure 4a, Supplementary Figure S9, Methods 4.11). These annotations were consistent with the418

latent space derived with totalVI-union (Supplementary Figure S10), and we used them throughout419

this section.420

Beyond markers used for annotation, we found that a totalVI one-vs-all DE test (in which one cell421

type is compared to all others) identified many additional features as differentially expressed by422

one or more subsets of cells (Methods 4.12, Figure 4b, c). For example, totalVI identified the gene423

Klrc2 as differentially expressed in both natural killer (NK) cells and gamma/delta T cells, which424

has previously been shown to be upregluated in these populations relative to alpha/beta T cells [48].425

On the protein side, totalVI identified CD335 (NKp46) as among the top protein markers for NK426

cells, which is a canonical marker used for sorting [49], and CD43, which is associated with the427

development of NK cells [50].428

Overall, the Bayes factors inferred by totalVI for the RNA data were highly correlated with those429

produced by scVI (Supplementary Figure S11a), which has been independently evaluated [47];430

therefore, we focused on evaluating the protein DE test. For the protein DE test, we focused on431

testing for accurate detection of true positive and negative cases of DE and reproducibility across432

datasets. Throughout, we compared totalVI to two methods – a Welch’s t-test applied to the433

log-transformed protein counts and a Wilcoxon rank-sum test. These general methods are commonly434

used for scRNA-seq data, so we used them as baselines for protein DE testing (Methods 4.12).435

We first evaluated the extent of false positives using isotype control antibodies. As isotype controls436

lack target specificity, differences in the abundance of isotype controls between cell types may stem437

from differences in background or other technical sources of variation. We applied totalVI to the438

SLN208-D1 dataset, which contained nine isotype controls, and performed a one-vs-all DE test. In439

all but one of the comparisons in the one-vs-all test, totalVI called zero of the isotype controls as440

differentially expressed, outperforming the baseline methods. totalVI also outperformed a version of441

itself (totalVI-wBG) in which the protein background component is not subtracted (Supplementary442

Figure S11b).443

To gain further insight into the extent of false positive and false negative DE calls, we compared444

ICOS-high regulatory T cells (ICOS-high Tregs) and conventional CD4 T cells from SLN-all in a445

one-vs-one DE test. This test is challenging because these two cell types share many of the same446

upregulated and downregulated features when compared with other immune cell types. Our analysis447

was based on a list of putative positives and negative surface proteins curated from previous studies448

that used flow cytometry. In this test, we expected CD73, CD357 (GITR), CD122, and CD5 to be449

upregulated (positives) in ICOS-high Tregs relative to conventional CD4 T cells [51–54].450

We found that all three methods identified these positives as significantly upregulated; however, the451

two baseline methods also incorrectly called all putative negatives as upregulated, which included452

I-A/I-E (MHC II), IgD, CD19, CD8b, and CD8a, which have no expected expression in either of453

these cell types (Figure 4d). Globally, the two baseline methods called the majority of the proteins454

in the panel (78/111 proteins in both cases) as differentially expressed, many of which are likely the455

result of differences in background. Filtering proteins by the observed LFC in the baseline methods456

may reduce false positives in these cases, but the increased accuracy would still be limited (e.g., CD5457

and IgD had a similar LFC and therefore could not be distinguished; Figure 4d). The totalVI test,458

on the other hand, correctly classified the putative negatives and putative positives in our curated459

list (Figure 4e), while calling 28 proteins differentially expressed in total. To further support the460

utility of removing background from the protein data, we performed this test using totalVI-wBG,461

which improved upon the baseline methods, but also falsely called I-A/I-E (MHC II) and CD8b as462

positives (Supplementary Figure S12a).463

To test for reproducibility across biological replicates, we applied each method separately to the464

SLN111-D1 and SLN111-D2 datasets in a one-vs-all DE test. Comparing the results obtained465

from each dataset (Bayes factors for totalVI and adjusted p-values for the benchmark methods)466

by Spearman correlation, we found that totalVI had the highest consistency between replicates467

(Spearman’s ρ = 0.91; Supplementary Figure S11c-e). We also tested for reproducibility across468

experimental designs: one in which the two CITE-seq datasets (SLN111-D1, SLN111-D2) had equal469

protein panels, and another in which proteins were measured in only one of the datasets. We used470

totalVI to integrate the two batches in each scenario and conducted one-vs-all DE tests. The resulting471

Bayes factors were reproducible between the two scenarios (Spearman’s ρ = 0.86; Supplementary472

Figure S11f).473
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Finally, the LFC estimates calculated by totalVI also better captured the underlying biological474

signal. For example, in a test of CD4 T cells vs all from SLN-all, the canonical marker CD4 had a475

higher LFC than in the raw data (Figure 4f). Additional markers like CD28 (T cell marker) and476

CD20 (B cell marker), which we previously highlighted as having highly overlapping foreground and477

background components, had respectively higher and lower LFCs compared to LFCs derived from478

the raw data. This increase in contrast is driven by totalVI’s ability to probabilistically remove the479

background.480

2.7 Interpretation of totalVI latent space481

Deep-learning-based methods for dimensionality reduction tend to rely on “black-box” models, making482

it difficult to interpret the coordinates of their inferred low-dimensional latent spaces. For example,483

for autoencoder-based single-cell methods like scVI or DCA [13, 24], there is no straightforward484

way to determine which expression programs are associated with each dimension of the latent space.485

This is in contrast to linear methods like PCA, GLM-PCA or LDVAE [27, 55], where each latent486

dimension is associated with a loading vector that describes the contribution made by each feature487

and thus enables direct interpretation. The interpretability of linear methods, however, comes at the488

expense of reduced capacity to fit complex data such as that obtained by scRNA-seq [27].489

In totalVI, although the relationship between the latent space and the observation space is non-linear,490

the model still provides a way to relate each latent dimension to the expression of individual genes491

and proteins. Specifically, the latent vector zn associated with each cell n follows a logistic normal492

distribution, such that the values in zn are non-negative and sum to one. Thus, each cell represents493

a mixture over the different vertices of a probability simplex [26, 56, 57]. Each of these vertices,494

commonly referred to as archetypes, corresponds to a point in the latent space of totalVI, where the495

value of z is 1 in one coordinate and 0 in all others. The individual cells can thus be thought of as496

making a tradeoff, choosing the archetypes that best describes their function. The archtypes, on the497

other hand, represent a summary of expression programs, the combination of which characterizes a498

cell.499

The expression profile associated with each archetype can be obtained using the decoder network of500

totaVI, as it is trained to map points in latent space to the parameters that underlie the distribution501

of each gene and protein (Figure 1b). To explore these archetypal gene and protein expression502

profiles, we decoded the archetypal points from the SLN-all dataset (Supplementary Figure S13a,503

b). We found that some archetypal points in this dataset correspond to specific cell types, whereas504

others corresponded to more global sources of variation that are not constrained to one cell type505

(Supplementary Figure S14a).506

For example, archetype 16 was associated with high protein expression of CD93 and CD24, which507

mark the transitional B cell subset (Supplementary Figure S14b). Conversely, archetype 7 was508

associated with interferon-response genes such as Ifit3 and Isg20 and reflected within cell type509

variability in several subsets, including CD4 and CD8 T cells, B cells, Ly6-high monocytes and510

neutrophils (Supplementary Figures S14c and S15). Therefore, archetypal analysis enables a data-511

driven alternative to clustering for characterizing the heterogeneity observed both between and within512

cell subsets.513

Archetypal analysis can also provide insight into the inner-workings of the model. In particular,514

we sought to evaluate the contribution of the protein data to the model and to the inferred latent515

space. To this end, we computed for every archetype, which percent of its top associated features516

are proteins. The representation of proteins amongst the top ranking features is higher than naively517

expected by their share of the feature population (Supplementary Figure S13c). Furthermore, the518

top genes often did not encode the top proteins in each archetype. Together, these results suggest519

that the protein data significantly influences the locations of the cells in the latent space.520

2.8 Characterization of B cell heterogeneity in the spleen and lymph521

nodes with RNA and proteins522

We next demonstrate how a joint representation of RNA and protein can be used to characterize cell523

identities within a specific immune compartment and in the context of multiple samples. To this end,524

we used the totalVI-intersect model fit on the SLN-all dataset and focused on the B cell population525
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Figure 5: Characterization of B cell heterogeneity in the spleen and lymph nodes with RNA
and protein. totalVI-intersect was applied to the SLN-all dataset. Data were filtered to include B cells. a,
UMAP plot of totalVI latent space labeled by cell type. b, c, UMAP plots of totalVI latent space colored by
(b) totalVI protein expression of six marker proteins and (c) totalVI RNA expression of the six genes that
encode the corresponding proteins in (b). d, UMAP plot of totalVI latent space labeled by tissue. e, Cell
type composition per tissue. f, g, totalVI one-vs-all differential expression test on B cell subsets filtered for
significance (Methods 4.12) and sorted by the totalVI median LFC. (f) The top three differentially expressed
proteins per subset and (g) the top ten differentially expressed genes per subset, arranged by the subset
in which the LFC is highest. h, totalVI Spearman correlations in transitional B cells between RNA and
proteins, which were selected as described in Methods 4.14. Features were hierarchically clustered and are
labeled as either RNA or protein, and by the cell type with which the feature is associated. i, UMAP plot
of totalVI latent space colored by Z16 (the totalVI latent dimension associated with transitional B cells).
j, totalVI expression of features in (h) as a function of (1 − Z16). Each feature was standard scaled and
smoothed with a loess curve.
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(Methods 4.14, Figure 5a).526

We start with characterizing cell identities using prior biological knowledge by curating a set of527

six surface markers that are commonly used for isolating B cell subsets (Table 4), and visualizing528

their expression on the UMAP representation of the totalVI latent space (Figure 5b). We found529

that these markers stratified the B cells into groups that were largely consistent with unsupervised530

clustering (Methods 4.14). RNA expression of these markers followed similar patterns to the proteins531

they encode (Figure 5c). This analysis identified several B cell subsets, including transitional B532

cells (marked by CD93 and CD24) and mature B cells (marked by IgD and CD23). Additionally,533

we detected clusters that represent the non-follicular subsets of B1 and marginal zone (MZ) B cells534

(marked by CD43 and CD21, respectively).535

Comparing the composition of the different B cell subsets in the spleen and in the lymph nodes536

(Figure 5d), we found that these tissues contained overlapping but not identical subsets of B cells537

in a manner that was consistent with previous studies (Figure 5e, [58, 59]). In particular, clusters538

spanned the developmental range from recent bone-marrow emigrants in the splenic transitional B539

cell subset to a mature subset that had substantial representation in both the spleen and lymph540

nodes. As expected, the B1 and MZ B cell subsets were found primarily in the spleen.541

Moving beyond visualization of known markers, we used totalVI in a more unbiased approach to542

quantify the differences between the B cell clusters with a one-vs-all DE test (Methods 4.12). With543

a single DE test, totalVI was able to provide information about these B cell subsets using both544

their protein and RNA expression (Figure 5f, g). As expected, the totalVI DE test found the set of545

six known surface markers in Figure 5b to be among the top three protein markers defined by the546

corresponding one-vs-all test (Figure 5f). Most RNA molecules encoding the marker proteins were also547

differentially expressed in the respective one-vs-all test. The complete set of differentially expressed548

genes, however, contained many additional molecules at similar or higher level of significance. This549

list included informative genes whose products are not necessarily present on the surface of the cell,550

such as the transcription factor Bhlhe41 that marks B1 B cells (Figure 5g, [60]).551

More globally, the protein data combined with the transcriptome-wide view enabled a more refined552

characterization of variation within the four major sub-populations identified above by surface553

markers. One example of this is a sub-population of mature B cells, labeled here as Ifit3-high B cells.554

The Ifit3-high B cells expressed all of the protein and RNA markers of mature B cells and could not555

be clearly distinguished from the remaining mature B cells based on protein data alone (maximal LFC556

across all proteins was less than 0.19). Nevertheless, based on transcriptome-wide DE analysis, this557

cluster could still be distinguished as a sub-type of mature cells by the elevated expression of a host558

of interferon response genes (Figure 5g). This observation was also supported by a gene signature559

analysis with Vision [61], which identified two interferon response signatures that were enriched560

in the Ifit3-high B cell cluster (Methods 4.14, Supplementary Figure S15a, b). The expression of561

interferon response genes was not necessarily expected in this steady state condition (i.e., with no562

induced inflammation), however, we found the Ifit3-high B cell cluster as well as Ifit3-high T cell563

clusters to be represented in both biological replicates, and therefore took it to capture part of the564

biology in the SLN-all dataset (Supplementary Figure S15c, d).565

As a second example, we explored the variability within the subset of transitional B cells and its566

relationship with the process of B cell development. Interestingly, latent dimension 16 (Z16) captured567

a gradual transition within this cluster: from a small population of Rag1 expressing cells (indicating568

early development [58]) to cells that were closer to the mature cluster (Figure 5i, Supplementary569

Figure S16b, c). We used totalVI to explore how development from transitional to mature B cells570

may be associated with coordinated changes in gene and protein expression. To do this, we calculated571

the totalVI Spearman correlations separately within transitional and mature B cells for a set of572

features that distinguished between the two subsets (Methods 4.14). Within the transitional B573

cells, hierarchical clustering clearly stratified this feature set into two anti-correlated modules, one574

corresponding to proteins and RNA associated with transitional B cells and the other to mature575

B cells (Figure 5h). These modules, however, were less apparent in a hierarchical clustering of576

these features in mature B cells (Figure S16a), indicating that the apparent coordination may be577

a characteristic of the transitional state. Focusing on the transitional B cells, we found that the578

features in the two modules significantly correlated with the axis of maturation captured by latent579

dimension 16 (Supplementary Figure S16d). For cells progressing along this axis, the expression of580

features in the transitional module decreased and those in the mature module increased (Figure 5j,581
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Methods 4.14). These results therefore point to a program of transitional B cell maturation that582

consists of coordinated activation and repression of multiple genes and surface proteins, leading to a583

gradual transition in cell state.584

Taken together, these analyses demonstrate the ability of totalVI to reveal biologically-relevant585

patterns in feature expression and to identify differentially expressed RNA and surface proteins586

that could independently inform future experiments and analyses. While the proteins measured did587

not cover the entire proteome, they provide a crucial link to the surface marker literature that has588

traditionally defined cell types and present an opportunity to identify new markers for which we have589

antibodies. Many of the most defining RNA features in B cells do not encode surface proteins, but590

nonetheless are likely to play defining roles in cell state through transcriptional regulation. Through591

this multi-level analysis based on a combined RNA-protein view in a joint latent space, we could592

thus obtain a more complete picture of cell identity.593

3 Discussion594

We have developed totalVI, a scalable, probabilistic framework for end-to-end analysis of paired tran-595

scriptome and protein measurements in single cells. totalVI couples a low-dimensional representation596

of the paired data with disparate downstream analysis tasks such as visualization, identification597

of cell types and cell states, integration of datasets, data denoising, imputation of missing protein598

measurements, and differential expression testing. totalVI builds upon previous autoencoder-based599

methods that have been successfully applied to a variety of common tasks in single-cell transcrip-600

tomics data analysis [13, 24]. To handle the addition of proteins, totalVI assumes that RNA and601

protein measurements are generated from the same latent space of cells that captures their state –602

an assumption shared by a number of multi-omics methods [36, 62, 63].603

A distinction of totalVI is that it explicitly models modality-specific technical factors that contribute604

to the observed data, obviating the need for a preprocessing step of normalization, which may induce605

biases [64]. For proteins specifically, totalVI leverages the concept of mixture density networks [65],606

establishing for each protein within each cell a negative binomial mixture in which the component607

with smaller mean corresponds to background. We demonstrated that this mixture could be effectively608

used to identify protein measurements that are the result of protein background and likewise those609

that correspond to real surface proteins. This enabled a denoised view of the data, which led to more610

accurate differential expression results.611

We demonstrated how totalVI can be used to conduct a tiered analysis in our characterization612

of the heterogeneity of B cells in the murine spleen and lymph nodes. Based on a joint latent613

space containing both RNA and protein information from integrated datasets, we identified clusters,614

visualized and interpreted those clusters using known B cell surface markers, and performed a615

higher-resolution differential expression analysis that revealed a combination of RNA and protein616

markers that characterized each cluster. This analysis demonstrates an approach that can be applied617

to other biological systems to identify new cell types and surface markers, and provide a more detailed618

understanding of cell states and molecular processes through the combination of transcriptomic and619

proteomic information.620

Going beyond the characterization of cell types, totalVI can uncover relationships between RNA and621

protein molecules within a cell. For example, totalVI could be used to investigate the relationship622

between the level of an RNA transcript and the level of its encoded protein in different biological623

settings, which remains an open question [66]. Previous works aiming to quantify RNA-protein624

relationships with paired measurements have reported weak positive correlations [8, 9]. However, it625

is unclear to what extent these low correlations can be attributed to technical noise in RNA and626

protein measurements or to biological factors such as transcription, translation, and post-translation627

dynamics. We found that the totalVI correlations were higher in magnitude than raw correlations628

across the majority of RNA-protein pairs, suggesting that the low correlations between RNA and629

proteins observed in previous studies could have been the result of technical noise. Future work630

quantifying correlations and regulatory relationships between RNA and protein features could inform631

our understanding of co-regulated gene networks, signal transduction pathways, or transcription and632

translation dynamics [12].633

totalVI is the culmination of an iterative design process that consists of defining a candidate generative634

process and inference procedure, and then criticizing the model’s performance [22]. This process635
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encodes domain knowledge into the hierarchical model that disentangles sources of variation. In636

modeling the protein data, we added components like protein background parameters that reflect our637

understanding of the CITE-seq experimental data-generating process, which we further discuss in638

Appendix A. Furthermore, we addressed a number of practical concerns with neural-network-based639

approaches, including their interpretability and sensitivity to hyperparameter choices (e.g., number of640

layers, learning rate, etc.) [67]. To address interpretability, we constrained the totalVI latent space to641

be the probability simplex, which enabled us to link variation in latent dimensions to particular genes642

and proteins with archetypal analysis [26]. This revealed that some of totalVI’s latent dimensions643

were associated with specific cell types, while others corresponded to more global sources of variation,644

which could be observed within several cell types. With regard to the second concern, we used a645

default set of hyperparameters across all datasets and analysis tasks (Appendix C), demonstrating646

state-of-the-art results.647

While the totalVI model was designed in consideration of the CITE-seq experimental protocol,648

we envision totalVI being used to inform experimental design by optimizing methods that affect649

signal-to-noise (Appendix A). For instance, totalVI could help identify optimal antibody titrations650

that improve the identification of foreground and background in protein measurements. totalVI651

could also be used to identify sequencing depths for RNA and protein libraries that balance the652

information gained per measurement in various analysis tasks with the cost of additional sequencing653

[68, 69].654

totalVI is available as part of the scvi software package, thus allowing for a consistent programmatic655

interface and workflow for users analyzing different types of single-cell data. This software package656

includes tutorials that demonstrate functionality described here, as well as the interaction between657

totalVI and Scanpy [70], a popular Python-based single-cell analysis pipeline. Since totalVI processes658

datasets in mini-batches of hundreds of cells, it has a small memory footprint and therefore can659

typically be used with free cloud computing environments like Google Colab. Overall, the accessibility660

and scalability of totalVI make it readily available to contribute to and extract knowledge from661

growing community efforts such as the Human Cell Atlas [4].662

The flexibility and scalability of totalVI make it easily applicable to future datasets with larger663

protein panels, and enable extensions that incorporate additional paired measurements. For example,664

we expect totalVI to naturally handle intracellular proteins measured with barcoded antibodies.665

Further additions of modalities like chromatin accessibility [71] or clonotype features [72] is made666

straightforward within the totalVI codebase with consideration of the modality-specific likelihood.667

By combining multiple views of cellular processes, totalVI could reveal a more complete picture that668

redefines cell states and elucidates mechanistic relationships between molecular components of the669

cell.670
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4 Methods693

4.1 The totalVI model694

totalVI estimates a conditional distribution for cell n, pν(xn, yn | sn), in which xn is the G-dimensional695

vector of observed RNA counts (G genes), yn is the T -dimensional vector of observed protein counts696

(T proteins) and sn is the B-dimensional one-hot vector describing the batch index (experiment697

identifier). In total, there are N cells. We use ν to refer to the set of all generative parameters,698

which are described throughout this section. This distribution is estimated using the framework of699

variational autoencoders (VAE; [25]).700

We begin by describing the generative process, for which a graphical summary is in Figure S17 and701

an algorithmic summary is in Algorithm 1. We then describe the inference procedure, as well as how702

downstream analysis tasks are directly linked to posterior queries of the model.703

Priors The latent cell representation zn ∼ LogisticNormal(0, I), where the logistic normal distribu-704

tion is a distribution over the probability simplex. This specification enables cells to be interpreted705

with archetypal analysis (Methods 4.13). Typically in VAEs, zn follows an isotropic normal distribu-706

tion, which is chosen for computational convenience [25]. In this setting, a logistic normal distribution707

arises as transforming a sample from a normal distribution with a softmax function. A full description708

is in Appendix C. For all experiments, we set zn to 20 dimensions. The latent RNA size factor709

`n | sn ∼ LogNormal(`>µ sn, `>σ2sn), where `µ ∈ RB and `2σ ∈ RB+ are set to the empirical mean and710

variance of the log RNA library size (defined as total RNA counts of a cell) per batch. We use a711

protein-specific prior for the protein background intensity, where βnt | sn ∼ LogNormal(c>t sn, d>t sn).712

The parameters for the background intensity, ct ∈ RB and dt ∈ RB+, are protein specific and are713

treated as model parameters learned during inference. This prior is motivated by the observation714

that some component of the background is due to ambient antibodies. A prior can also be thought715

of as regularizing the posterior distribution, thus reducing the influence of outliers [73].716

RNA likelihood Given zn, `n, and sn, an observed expression level xng follows a negative binomial717

distribution, which we present here as a Gamma-Poisson mixture:718

ρn = fρ(zn, sn) (1)719

wng | zn, `n, sn ∼ Gamma(θg, `nρng) (2)720

xng | wng ∼ Poisson(wng) (3)721

The gamma distribution is parameterized by its shape and mean. The mean is equal to `nρng, where722

`n, a scaling factor, is multiplied by ρng, interpreted as a normalized gene frequency (because ρn is723

nonnegative and sums to one). ρn is the output of a neural network fρ, which takes zn and sn as724

input (Algorithm 1).725

Integrating out wng results in the following conditional distribution:726

xng | zn, `n, sn ∼ NegativeBinomial(`nρng, θg). (4)727

The parameter θg, which is the shape of the gamma distribution, is also the inverse dispersion of the728

negative binomial. Further details on this connection are in Appendix B. We perform inference on729

the model with wng integrated out. We also treat θg as a model parameter learned during inference.730

Overall, this likelihood is equivalent to that presented in scVI [13], without zero-inflation.731
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Algorithm 1: The totalVI generative model. The gamma distribution is parameterized by its shape
and mean. Let ν be the set of model parameters described here. A dataset has G genes and T
measured proteins.
Define: Neural networks
fρ(zn, sn) : ∆K−1 × {0, 1}B → ∆G−1, (Softmax output activation)
gα(zn, sn) : ∆K−1 × {0, 1}B → [1,∞)T , (ReLU plus one output activation)
hπ(zn, sn) : ∆K−1 × {0, 1}B → (0, 1)T (Sigmoid output activation)
Require: Inverse dispersion parameters θ ∈ RG+, φ ∈ RT+. Neural network parameters.
for each cell n do

zn ∼ LogisticNormal(0, I) K-dimensional cellular state variable
ρn = fρ(zn, sn) G-dimensional RNA frequency
αn = gα(zn, sn) T -dimensional foreground increment protein scaling
πn = hπ(zn, sn) T -dimensional mixture parameter
`n ∼ Lognormal(`>µ sn, `>σ2sn) Cell scaling factor for RNA
for each gene g do

wng ∼ Gamma (θg, `nρng)
xng ∼ Poisson (wng)

for each protein t do
βnt ∼ Lognormal(c>t sn, d>t sn) Scalar background mean
vnt ∼ Bernoulli(πnt) Scalar foreground/background mixing variable
if vnt = 1 then

rnt ∼ Gamma (φt, βnt)
ynt ∼ Poisson (rnt)

else
rnt ∼ Gamma (φt, βntαnt)
ynt ∼ Poisson (rnt)

Protein likelihood To capture observed protein counts arising from the background or foreground,732

we model ynt with a negative binomial mixture, given zn, βn and sn. This conditional distribution is733

described by the following process:734

πn = hπ(zn, sn) (5)735

αn = gα(zn, sn) (6)736

vnt | zn, sn ∼ Bernoulli(πnt) (7)737

rnt | vnt, βnt, zn, sn ∼ Gamma(φt, vntβnt + (1− vnt)βntαnt) (8)738

ynt | rnt ∼ Poisson(rnt) (9)739

Here vnt controls which mixture component generates the counts. Its parameter, πnt, is the output740

of the neural network hπ(zn, sn). Notably, αnt, which is the output of the neural network gα(zn, sn),741

is greater than one. This ensures that one of the mixture components is always larger than the742

other, allowing us to interpret one component as background and one component as foreground.743

Furthermore, πnt is interpreted as the probability that any cell-protein pair has observed counts due744

to background alone. For one mixture component, ynt | zn, βnt, sn, vnt follows a negative binomial745

distribution, as can be seen by integrating out rnt. Finally, integrating out vnt too shows that ynt746

given zn and sn follows a negative binomial mixture distribution, where φt is a protein-specific inverse747

dispersion parameter.748

4.2 Inference for totalVI749

Here we describe the inference procedure for totalVI except for the case of missing data (i.e., totalVI750

union). The model evidence, pν(x1:N , y1:N | s1:N ), cannot be computed as the integrals are analytically751

intractable, so Bayes rule cannot be directly applied to find a posterior distribution. Therefore, we752

use variational inference [74] to approximate the posterior distribution with a distribution having the753

following factorization:754

qη(βn, zn, `n | xn, yn, sn) := qη(βn | zn, sn)qη(zn | xn, yn, sn)qη(`n | xn, yn, sn). (10)755
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Here η is the set of parameters of an inference network, commonly called the encoder – a neural network756

that takes a cell’s combined expression as input and outputs the parameters of the approximate757

posterior (e.g., mean and variance). Factors of the posterior approximation share the same family as758

their respective priors (e.g., q(βn | zn, sn) is lognormal). As described previously, we integrate out759

the latent variables vnt, rnt and wng (Algorithm 1), yielding pν(ynt | zn, βnt, sn), which is a mixture760

of negative binomials and pν(xng | zn, sn, `n), which is a negative binomial distribution.761

We optimize the evidence lower bound (ELBO) [74] of log pν(x1:N , y1:N |s1:N ) with respect to the762

variational parameters η and model parameters ν using stochastic gradients [25]. In other words,763

we learn the model parameters and posterior distributions simultaneously. In the VAE framework,764

the generative neural network is referred to as the decoder. Each iteration of training consists of765

randomly choosing a mini-batch of data (256 cells), estimating the ELBO based on this mini-batch,766

and updating the parameters via automatic differentiation operators. The terms corresponding767

to Kullback-Leibler divergences of the ELBO (see Appendix C) follow a deterministic warm-up768

scheme [75], which helps to avoid shallow local maxima. We use the Adam optimizer [76] with weight769

decay to update the model parameters. Learning rate reductions and early stopping are performed770

based on the ELBO of a validation set.771

All neural networks are feedforward and and use standard activations (e.g., exponential, softmax,772

sigmoid) to encode the variational and generative distributions. We use the same hyperparameters773

for all our experiments. Appendix C gives further implementation details.774

Inference in the case of missing proteins Here we adapted the training procedure from [77]775

to handle missing protein data. As any single batch may correspond to an experiment that used776

a different protein panel (or no proteins in the case of a scRNA-seq experiment), the missingness777

of protein features depends on the batch index sn. Further, suppose all batches share the same778

set of genes. Across all batches, there are T proteins. For cell n, we denote the observed protein779

expressions yobs
n and the unobserved protein expressions ymis

n . The log likelihood of the observed780

data decomposes as781

log pν(x1:N , y
obs
1:N , s1:N ) =

N∑
n=1

log pν(xn, y
obs
n | sn) (11)782

The generative process for the observed data is the same as in Algorithm 1, with appropriate783

modification to only generate the features present in a particular batch. Thus, ν is the same set784

of model parameters described previously. Again, we use variational inference to approximate the785

posterior distribution with the distribution in Equation 10. In fact, all approximate posteriors share786

the same encoder parameters η. We optimize the ELBO of Equation 11 similarly to the procedure787

used when there is no missing data (i.e., we optimize the ELBO with respect to the model parameters788

ν and variational parameters η). To handle mismatched dimensions in the encoder, we substitute789

zeros for missing proteins, and for the decoder, we only calculate the ELBO terms corresponding to790

observed data [40]. Therefore, this procedure naturally extends to the case when there is no observed791

protein data for a cell n, which would be the case when the cell is obtained from a scRNA-seq792

experiment. Since the quality of missing protein imputation depends on (i) the goodness of fit of793

totalVI to the protein for the data in which it was observed and (ii) the statistical distance of the794

aggregated posterior distributions of zn for each of the batches [77, 78], we add a domain adaptation795

regularization term to the ELBO when training [79]. A scaling factor on this regularization term796

decays from one to zero early in training.797

4.3 Posterior predictive distributions linked to downstream tasks798

For tasks like differential expression, denoising, and finding correlations, totalVI estimates functionals799

of posterior predictive distributions [22]. Define Cn = {xn, yn, sn} as the set of observed data for800

cell n. First, consider the connection between the posterior predictive distribution of RNA data to801

totalVI denoised RNA expression. The posterior predictive RNA expression x∗ng for gene g given Cn802

is distributed following:803

p(x∗ng | Cn) ≈
∫
pν(x∗ng | zn, `n, sn)qη(zn, `n | Cn)dznd`n, (12)804
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To produce denoised RNA expression, we compute the posterior predictive mean of x∗ng. To further805

control for variation due to `n, we condition on `n = 1. By the law of total expectation,806

Ep(x∗ng | Cn,`n=1)[x
∗
ng] = Eqη(zn | Cn)

[
Epν(x∗ng | zn,sn,`n=1)[x

∗
ng]
]

(13)807

= Eqη(zn | Cn)[ρng], (14)808

where ρng is the expectation of the RNA likelihood with the additional condition that `n = 1.809

For each cell n, we can compute the denoised RNA expression by averaging samples of ρn generated810

by the following process:811

1. Sample zn from qη(zn | Cn)812

2. Set ρn = fρ(zn, sn)813

There are two important considerations for these posterior predictive distributions. First, we use the814

approximate posterior as a surrogate for the posterior. Second, these posterior predictive distributions815

are not tractable to compute in closed form, so we can only sample from them with ancestral sampling.816

Functionals of the posterior are computed using Monte Carlo integration.817

Denoised protein expression After training the model, we can generate “denoised” protein818

expression – protein expression effectively absent of background and controlled for sampling noise.819

Consider the perturbed protein generative process in which we set the background intensity to820

zero:821

vnt | zn, sn ∼ Bernoulli(πnt) (15)822

r̃nt | vnt, βnt, zn, sn ∼
{
Gamma(φt, βntαnt) if vnt = 0

δ0 if vnt = 1
. (16)823

Here δ0 is a point mass distribution at 0. After marginalizing out vnt, r̃nt | zn, sn, βnt follows a824

zero-inflated Gamma distribution with mean (1− πnt)βntαnt.825

For denoising, we return the posterior predictive mean of r̃nt. Indeed, the posterior predictive mean826

is equal to (1− πnt)βntαnt averaged over many posterior samples of q(βnt, zn | Cn). In other words,827

we return the foreground mean, weighted by the probability that the observation was derived from828

the foreground. This can also be stated as subtracting the expected background from the expected829

total signal.830

Missing protein imputation To impute protein expression y∗nt for cell n and protein t missing in831

batch sn, but that is observed in a batch s′ 6= sn, do the following:832

1. Sample zn from qη(zn | Cn)833

2. Sample βnt from qη(βnt | zn, s = s′)834

3. Sample y∗nt from pν(y∗nt | zn, βn, s = s′)835

This process returns samples of p(y*
nt | Cn, s = s′). Intuitively, we encode the cell into the latent836

space, which is designed to mix the batches (i.e., be an integrated low-dimensional representation837

of the data), and obtain the parameters for the protein likelihood (decode) conditioned on the cell838

being in batch s = s′. Thus, the quality of imputation relies on how well batches mix in the totalVI839

latent space. Ultimately, we report the expected value of the imputed distribution840

Ep(y∗nt | Cn,s=1)[y
∗
nt] = Eqη(zn | Cn)

[
Ep(y∗nt | zn,s=1,βnt)[y

∗
nt]
]

(17)841

We may also impute the denoised expression, by exchanging pν(y∗nt | zn, βn, s) with pν(r̃nt | zn, βn, s).842

This change would additionally remove the protein background contribution to the prediction.843

Differential expression With a single model fit, totalVI can detect differentially expressed features844

between sets of cells, i.e., the model does not need to be retrained for every test. Here we use the845

Bayesian framework of [47] to detect differential expression (DE) of genes and proteins. Let846

λa,b := Λ(za, zb, sa, sb) := log2 ρa − log2 ρb (18)847
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be the log fold change (LFC) of RNA expression between cells a and b. Then the probability that848

gene g is differentially expressed (DE) is849

p(|λga,b| ≥ δ | Ca, Cb) ≈
∫
1{|λga,b| ≥ δ}q(za | Ca)q(zb | Cb)dzadzb, (19)850

where δ is a threshold for the effect size. Intuitively, we are measuring the fraction of posterior851

samples that the absolute LFC greater than or equal to δ. For all experiments we set δ = 0.2. We852

compare the DE probability to the probability that the LFC is in the null region |λga,b| < δ using a853

Bayes factor:854

BFga,b =
p(|λga,b| ≥ δ | Ca, Cb)
p(|λga,b| < δ | Ca, Cb)

. (20)855

This can also be extended to groups of cells. Let A = {a1, a2, ..., am} be the indices of one856

subpopulation of interest, and B = {b1, b2, ..., bn} be the other subpopulation of interest. We then857

exchange the posterior distributions in Equation 19 with the aggregated posterior:858

qη(za | CA)qη(zb | CB) =

[
1

|A|
∑
a∈A

qη(za | Ca)

][
1

|B|
∑
b∈B

qη(zb | Cb)

]
. (21)859

In this sampling procedure, a cell representation za (resp. zb) is sampled given one randomly chosen860

cell in subpopulation A (resp. subpopulation B). Then, it is determined if |λga,b| ≥ δ via an indicator861

function. The DE probability is estimated based on many samples.862

Furthermore, by integrating over the batch variable sn, we effectively compare cells as if they were in863

the same batch [13]. For genes, this is equivalent to computing864

p(|λga,b| ≥ δ | Ca, Cb) ≈
∑
s′

∫
1{|[Λ(za, zb, s

′, s′)]g| ≥ δ}p(s′)q(za | Ca)q(zb | Cb)dzadzb. (22)865

Here p(s′) is a uniform prior over batches. Every time we sample from the posterior, we decode866

the samples using the same batch indicator, averaging the DE probability over every possible batch867

indicator.868

For proteins, we use the same framework, but define869

γta,b = log2 (E[r̃at | βat, vat, za] + ε)− log2 (E[r̃bt | βbt, vbt, zb] + ε) , (23)870

where the conditional expectation is equal to871

E[r̃at|βat, vat, za] = βatαat(1− vat). (24)872

This is interpreted as the foreground mean if the cell was generated from the foreground, and873

zero otherwise. The added constant ε is a “prior count” that helps define the log fold change when874

E[r̃nt | βnt, vnt, zn] = 0. For all analysis, we set ε = 0.5. As with genes, we are interested in calculating875

p((|γta,b| ≥ δ | Ca, Cb), where in this case we integrate with respect to the distribution876 ∏
i∈{a,b}

p(vit | zi)q(βit | zi, si)q(zi | Ci). (25)877

We consider features with a log(BF) > 0.7 as differentially expressed. This is roughly equivalent878

to calling features significant if the odds ratio (here equivalent to a Bayes factor) is greater than 2.879

Finally, we use the posterior samples of λa,b (resp. γa,b for proteins) as the estimate of effect size for880

each gene (resp. protein). Specifically, we use the median of the samples, which is robust to outliers881

and is also the Bayes estimator under L1 loss.882

Denoised correlation matrix construction We seek a feature-feature correlation matrix (e.g.,883

gene-gene correlations, gene-protein cross-correlations) that summarizes biological variation, instead884

of technical variation. As totalVI explicitly models nuisance factors (for genes as well as proteins),885

we can query the model while controlling for this nuisance variation. Furthermore, because naive886

computations of correlations on denoised values (parameters of conditional distributions) were shown887
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to induce spurious gene-gene correlations [37], we develop a novel sampling scheme that helps remove888

technical variation while avoiding such artifacts.889

In order to ensure our correlation matrix does not include variation from the modeled technical factors,890

we perturb the data generating process to fix the library size (`n = 10000) as well as incorporate the891

denoised protein expression conditional distribution. In particular, we compute a correlation matrix892

using samples from the distribution893

p(logwn, log r̃n | C1:N , `1:N ). (26)894

This is also a posterior predictive density whose samples are generated with ancestral sampling. As895

r̃n is zero-inflated, we add the same “prior count” before taking the logarithm. For this distribution,896

we sample ancestrally using the aggregated posterior897

qη(zn, βn | C1:N ) =
1

N

N∑
n=1

qη(zn | Cn)qη(βn | zn, sn), (27)898

One could in principle replace the aggregated posterior with the prior in case of analyzing dataset-wide899

correlations. However, this approach is more flexible as it can be applied to calculate the correlation900

matrix for a subpopulation A = {a1, a2, ..., am}, where A is the set of indices for the subpopulation,901

by conditioning the distribution on xA and yA.902

The distinction between this procedure and those that induced spurious correlations is that the latter903

effectively estimates a correlation matrix using the expected value of the posterior predictive distri-904

bution, rather than estimating the correlation matrix of the posterior predictive distribution.905

Out-of-batch generalization totalVI learns a transformation from zn and sn to the parameters906

of the conditional distributions for each feature (decoder). In an out-of-batch prediction, we predict907

the expression of a cell (e.g., the mean of conditional distribution) given a batch s 6= sn. Here we908

describe a general way to sample posterior quantities for a cell while also “transforming” it into a909

different batch that was also observed for other cells. Special cases of this have already been described910

in the protein imputation and differential expression sections. Consider, for instance, the RNA counts911

in cell n and gene g. We can calculate posterior predictive samples of xng while conditioning on any912

arbitrary observed batch b. Then,913

p(x∗ng | Cn, s = b) ≈
∫
pν(x∗ng | zn, s = b)qη(zn | Cn)dzn. (28)914

Furthermore, we can integrate over the choice of batch by sampling from915 ∑
b

p(x∗ng | Cn, s = b)p(s = b), (29)916

where p(s) is a uniform prior over batches. We take the expected value of this particular distribution917

as batch-corrected, denoised gene expression data. This “transforming” can also be applied to other918

likelihood parameters like πn.919

4.4 CITE-seq experiment on mouse spleen and lymph node920

Table 1 shows a summary of the experimental design that generated the mouse spleen and lymph921

node CITE-seq datasets. Below, we describe in further detail how these datasets were collected and922

processed.923

Cell preparation Two female C57BL/6 (B6) mice at 5 weeks of age were euthanized using CO2.924

From each mouse, six lymph nodes were harvested, pooled in RPMI + 10% FBS media on ice,925

mechanically dissociated with a syringe plunger, and passed through a 70 µm strainer to generate926

a single cell suspension. Likewise, the spleen was harvested, placed in RPMI + 10% FBS media927

on ice, mechanically dissociated with a syringe plunger, and passed through a 70 µm strainer to928

generate a single cell suspension. For the spleen, red blood cells were lysed in Red Blood Cell Lysis929

Buffer (BioLegend #420302) following the manufacturer’s protocol. All animal care and procedures930

were carried out in accordance with guidelines approved by the Institutional Animal Care and Use931

Committee.932
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Dataset Antibody Cells Cells
name panel Day Mouse Tissue (captured) (post-filtering)

SLN111-D1 111 1 A Spleen; Lymph Node 11,160 9,264
SLN111-D2 111 2 B Spleen; Lymph Node 9,017 7,564
SLN208-D1 208 1 A Spleen; Lymph Node 10,777 8,715
SLN208-D2 208 2 B Spleen; Lymph Node 8,921 7,105

Table 1: Summary of spleen and lymph node datasets. Each dataset was processed in a separate 10x
lane. Each day indicates a 10x run. Cells captured is the number of cells reported by Cell Ranger.

Antibody panel preparation We prepared panels containing 111 and 208 antibodies from933

BioLegend in the TotalSeq-A format (Supplementary Data: Antibodies). We performed a buffer934

exchange on each panel using a 50kDa Amicon spin column (Millipore #UFC505096) following the935

manufacturer’s protocol to transfer antibodies into RPMI + 10% FBS. Spleen and lymph node cell936

suspensions were stained with different hashtag antibodies [28].937

CITE-seq protocol and library preparation The CITE-seq experiment was performed following938

the TotalSeq protocol with two slight modifications. First, the 10 minute centrifugation at 14,000g939

to remove antibody aggregates was conducted prior to buffer exchange. Second, cells were stained,940

washed, and resuspended in RPMI + 10% FBS to maintain viability. After staining, washing, and941

counting, 12,000 spleen cells and 12,000 lymph node cells were mixed and loaded into a single942

10x lane. We followed the 10x Genomics Chromium Single Cell 3’ v3 protocol to prepare RNA,943

antibody-derived-tag (ADT) and hashtag-oligo (HTO) libraries [80].944

Sequencing and data processing RNA, ADT, and HTO libraries were sequenced with an945

Illumina NovaSeq S1. Reads were processed with Cell Ranger v3.1.0 with feature barcoding, where946

RNA reads were mapped to the mouse mm10-2.1.0 reference (10x Genomics, STAR aligner [81]) and947

antibody reads were mapped to known barcodes (Table 2). Hashtags were demultiplexed separately948

for each 10x lane with HTODemux in Seurat v3 using the kmeans function [38]. No read depth949

normalization was applied when aggregating datasets.950

Name RNA reads Protein reads RNA UMI Protein UMI

SLN111-D1 34,717 4,733 4,392 2,785
SLN111-D2 45,765 6,542 2,121 3,419
SLN208-D1 33,569 5,513 4,561 2,956
SLN208-D2 43,821 3,961 2,102 2,261

Table 2: Sequencing statistics for spleen and lymph node datasets. Sequencing statistics calculated
per 10x lane by Cell Ranger. RNA reads: mean reads per cell from RNA. Protein reads: mean reads per cell
from antibody barcodes. RNA UMI: median UMI counts per cell from RNA. Protein UMI: median UMI
counts per cell from antibody barcodes.

4.5 Additional datasets951

We also used publicly available CITE-seq datasets from 10x Genomics. These included “10k PBMCs952

from a Healthy Donor - Gene Expression and Cell Surface Protein” (PBMC10k, [31]), “5k Peripheral953

blood mononuclear cells (PBMCs) from a healthy donor with cell surface proteins (v3 chemistry)”954

(PBMC5k, [45]), and “10k Cells from a MALT Tumor - Gene Expression and Cell Surface Protein”955

(MALT, [32]).956

4.6 CITE-seq data pre-processing957

For each dataset, after initial cell and gene filtering, we retained at least the top 4,000 highly variable958

genes (HVGs) as defined by the Seurat v3 method, merging HVGs from different batches when959

appropriate [38]. Dataset specific filtering is described below.960
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Spleen and lymph node An initial cell filter removed cells expressing fewer than 200 genes. Cells961

labeled as either doublets or negative for hashtag antibodies by HTODemux were also removed. A962

protein library size filter retained cells with between 400 and 10,000 total protein UMI counts. We963

also filtered on the number of proteins detected. For cells stained with the 111 antibody panel, we964

removed cells with fewer than 90 proteins detected, while the cutoff was set to 170 for cells stained965

with the 208 antibody panel. Cells with a high percentage of UMIs from mitochondrial genes (15%966

or more of the cell’s total UMI count) were removed. An initial gene filter removed genes expressed967

in 3 or fewer cells in any given batch. In addition to the top 4,000 HVGs selected by the Seurat968

v3 method, we retained genes that encode the proteins targeted by the 111 antibody panel. This969

resulted in 4,005 total genes. After all filters, the distribution of cells per dataset was: (SLN111-D1,970

9,264 cells), (SLN111-D2, 7,564 cells), (SLN208-D1, 8,715 cells), (SLN208-D2, 7,105 cells). This is a971

total of 32,648 cells. Unless otherwise stated, we filtered out isotype control antibodies (9 total in972

the 208 panel) and hashtag antibodies. The protein CD49f was also removed due to having very low973

total UMI counts.974

PBMC10k, PBMC5k, & MALT For each of these datasets, we first removed doublets using975

DoubletDetection [82]. Cells with high mitochondrial content (percentage of UMIs from mitochondrial976

genes), high number of genes detected, high UMI counts, and with fewer than 200 genes expressed977

were removed. Next, cells with outlier protein library size (on either end) were removed. Genes978

with expression in three or fewer cells were removed. Finally, the top 4,000 HVGs were retained.979

Dataset specific parameters are in Table 3. In the case where the PBMC datasets are integrated, the980

4,000 HVGs are selected by merging HVGs computed on each dataset separately as in the Seurat v3981

method.

Dataset No. cells Pct. Mito Protein Lib Size Range No. Genes Expr. RNA lib size

PBMCK10k 6,855 < 10% [400, 20,000] < 4,500 < 20,000
PBMC5k 3,994 < 20% [400, 20,000] < 4,500 < 20,000
MALT 6,838 < 15% [400, 20,000] < 5,000 < 30,000

Table 3: Summary of filtering parameters for publicly available datasets. Ranges indicate criteria for
retained cells.

982

4.7 Posterior predictive checks and held-out metrics983

Posterior predictive checks are useful to check the fit of Bayesian models. They work by comparing the984

observed data to posterior predictive samples from the model [29]. Much of the benchmarking done985

here was inspired by previous work done to benchmark the scHPF model [14]. We primarly compared986

totalVI to factor analysis, which is a linear-Gaussian alternative to totalVI, and is easily extendable987

to multiple modalities are features are treated conditionally independent of the latent representation.988

We also compared performance on RNA only to scVI [13]. Posterior predictive samples for totalVI989

and scVI were obtained by calling the generate function in the scVI package. We ran scVI with990

20 latent dimensions and negative binomial conditional distribution in order to be consistent with991

totalVI. Factor analysis (FA) models were fit using the sklearn package [83] on the combined RNA992

and protein measurements using one of two normalization procedures. The first procedure consisted993

of transforming each value by log(count + 1). The second procedure consisted of log library size994

normalizing the RNA features and protein features separately. For example, considering only the995

RNA measurements for a cell, we normalized each cell to sum to 1 by dividing by the library size of996

RNA, multiplied by 10,000, added 1 to each value, and took a log transformation:997

x̃ng = log

(
L

xng∑
g xng

+ 1

)
, (30)998

where L = 10000. This process was then applied to the protein measurements. We refer to this999

type of normalization as log library size normalization, and for short, log rate. These normalization1000

procedures are necessary as FA assumes a Gaussian distribution, so training on the raw data would1001

lead to poor model fit. Posterior predictive samples for FA models were computed using the fitted1002
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parameters and posterior distribution derived in [84]. We note that normalization procedures were1003

inverted so that FA posterior predictive samples were on the same scale as the raw data.1004

For each dataset, each model was trained on a train set comprising of 85% of the cells. An additional1005

5% of cells were held-out as a validation set for totalVI early stopping. The remaining 10% of cells1006

were also held-out as a test set. For each model’s posterior predictive samples (25 for each model)1007

based on the train set, we calculated the coefficient of variation (CV) for each feature, and calculated1008

the mean absolute error between the average CV and the observed raw data CV. We also used1009

posterior predictive samples to assess generalization to unseen data. In this setup, we generated1010

posterior predictive samples (150 for each model) conditioned on the test set. We considered the1011

mean absolute error between the observed held-out data and the posterior predictive mean.1012

Moreover, we computed a held-out calibration error [30] for each model based on the test set. For1013

each cell n and gene g, let Ing be the indicator that the observed value is contained in the interval of1014

all posterior predictive samples. The calibration error for genes is then calculated as1015

CalRNA =

(
1− 1

NG

∑
n

∑
g

Ing

)2

. (31)1016

The calibration error for proteins is computed separately following the same procedure.1017

Finally, for totalVI and scVI only, and for only the RNA data, we computed the held-out predictive1018

log likelihood. In this metric, zn and `n were sampled from the variational posterior for each1019

cell n and the average negative conditional log likelihood, − log p(xn | zn, `n, sn) was computed.1020

This is also called the reconstruction loss in the VAE literature. This is also an approximation of1021

− log p(xn | xn, yn, sn), the negative predictive log likelihood. We note that we cannot compare the1022

log likelihood of totalVI and scVI, which use discrete conditional distributions to factor analysis1023

models, which use continuous conditional distributions.1024

4.8 Background decoupling benchmarking1025

We reported the totalVI background probability as the posterior predictive mean of πnt, thus1026

p(cell n, protein t is background) = Ep(πnt | xn,yn,sn)[πnt], (32)1027

where the expectation is approximated using Monte Carlo integration. The totalVI foreground1028

probability is one minus the background probability.1029

Observing protein background in empty droplets and non-expressing cell types To1030

observe different sources of protein background, we considered both empty droplets and cell types1031

with known expression of surface markers. We defined empty droplets as non-cell barcodes from the1032

SLN111-D1 dataset with between 20 and 100 RNA UMI counts (approximately 75,358 barcodes).1033

We chose these criteria so that empty droplets were likely to represent ambient molecules rather1034

than sequencing errors (with very low UMI counts) or cell debris (with higher UMI counts) [85].1035

To observe non-specific binding of antibodies, we considered B cells (which are known to express1036

CD19 and CD20, but not CD28) and T cells (which are known to express CD28, but not CD19 or1037

CD20). Using cell type annotations as described below (Methods 4.11), we grouped all high-quality,1038

non-doublet B cell clusters (excluding plasma B cells), and alpha/beta T cell clusters (including1039

all CD4, Treg, and CD8 T cell clusters). We observed that for these three proteins, both empty1040

droplets and the non-expressing cell type contained protein background (non-zero protein counts)1041

with varying degrees of overlap with the foreground signal of the expressing cell type. In this text,1042

we describe the protein counts of the non-expressing cell type above the counts in empty droplets1043

as non-specific antibody binding, although we acknowledge there could be multiple sources of this1044

cell-specific background (Appendix A).1045

GMM cutoff for protein foreground/background As a baseline determination of a cutoff1046

to distinguish cells with foreground or background protein expression, we used a Gaussian mixture1047

model (GMM). We applied scikit-learn’s GaussianMixture with default parameters to fit a GMM1048

with two components to the log(protein counts + 1) for each protein for all cells in the SLN111-D11049

dataset. We interpreted the posterior probability of the component with the higher mean as the1050

foreground probability and that of the lower mean as the background probability. The GMM cutoff1051
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between foreground and background was determined to be the protein expression level at which the1052

foreground probability was closest to 0.5.1053

Classification of cell type by marker proteins We sought to evaluate totalVI against a GMM1054

at predicting major cell types by the foreground probability of commonly used surface markers.1055

Restricting all cells to just those that fell into the categories of B cells or T cells as described above,1056

we tested how well totalVI or a GMM could classify cell types based on commonly used protein1057

surface markers. We used a GMM fit on all cells of the SLN111-D1 dataset for each protein as1058

described above. For each protein, we computed a receiver operating characteristic curve (ROC)1059

(sklearn.metrics) by thresholding the totalVI or GMM foreground probability estimates (described1060

above), using cell type annotations as true labels. We reported the area under the ROC (ROC1061

AUC). The cell type considered as the positive population was either B cells, T cells, CD4 T cells, or1062

CD8 T cells depending on the marker. In tests considering each of these positive populations, all1063

remaining cells among the B and T cells were considered the negative population. Marker proteins1064

tested included, for B cells: CD19, CD45R-B220, CD20, I-A-I-E (MHC II); for T cells: CD5, TCRb,1065

CD28, CD90.2; for CD4 T cells: CD4; for CD8T cells: CD8a, CD8b [86–89]. Although we are1066

aware of documented exceptions to these markers appearing strictly on a single cell type (e.g. CD51067

is expressed on a portion of B1 B cells), these exceptions are rare. In these cases where marker1068

expression is not mutually exclusive, cell types can still be distinguished by the gradation in levels1069

of the marker between cell populations. Thus, these exceptions do not negate the utility of these1070

markers in broad cell type classification (which is apparent in both totalVI and GMM performance1071

at this classification task).1072

Visualization and raw data normalization For the SLN111-D1 dataset, we visualized the1073

totalVI latent space in two dimensions using Scanpy’s [70] implementation of the UMAP algorithm1074

[44]. We applied log library-size normalization to the raw RNA counts as in Equation 30.1075

Distinguishing foreground and background in trimodal protein distributions Despite1076

using a two-component mixture, totalVI can decouple the background and foreground of proteins that1077

have more than two modes globally. totalVI is capable of distinguishing foreground and background1078

in this setting because the mixture is conditionally dependent on zn, which allows the foreground1079

and background expression modes to be defined locally in the latent space. For example, as has been1080

reported using flow cytometry [90], CITE-seq data of peripheral blood mononuclear cells contains1081

three modes of CD4 expression corresponding to CD4 T cells, monocytes, and background. totalVI1082

detected that both CD4 T cells and monocytes had foreground expression of CD4, while the CD41083

expression of the remaining cells was attributable to background expression.1084

Denoised protein expression Denoised protein expression was calculated as described in Meth-1085

ods 4.3. B cells and T cells were defined by annotations, as described above.1086

4.9 RNA-protein correlation analysis1087

Evaluation of correlation calculation with permuted features Using totalVI, we aimed to1088

calculate a correlation matrix between all RNA and protein features free from nuisance variation1089

such as sequencing depth and protein background. We took care to avoid the naive calculation of1090

correlations directly between denoised features, noting that a recent study reported false positive1091

correlations in smoothed scRNA-seq data [37]. Instead, we developed a novel sampling method1092

for the calculation of denoised feature correlations that removes nuisance variation while avoiding1093

imputation-induced artifacts (Methods 4.3).1094

To evaluate whether totalVI could calculate a denoised feature correlation matrix without introducing1095

spurious relationships in the data, we permuted the expression of a set of genes to serve as a negative1096

control. To create this set of negative control genes from the SLN111-D1 dataset, we selected the1097

100 genes with highest mean expression that were not already among the top highly variable genes1098

used in the model (Methods 4.6). We randomly permuted the counts of these genes within each cell,1099

rendering these genes independent of all other gene and protein features. After concatenating the1100

SLN111-D1 dataset with the permuted gene expression for all cells, we ran the totalVI model.1101

We then calculated Pearson and Spearman correlations between features using three methods,1102

referred to here as raw, naive totalVI, and totalVI correlations. Raw correlations were calculated1103
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between log library-size normalized RNA (Equation 30) and log(protein counts + 1). Naive totalVI1104

correlations were calculated between totalVI denoised RNA (Methods 4.3) and totalVI denoised1105

proteins (Methods 4.3). totalVI correlations were calculated by sampling denoised RNA and denoised1106

protein values from the posterior (Methods 4.3).1107

We observed the correlations between all RNA and protein features as well as the 100 additional1108

genes whose expression was randomly permuted. By comparing the raw correlations with denoised1109

correlations, we observed whether the method of denoising could maintain the relationship between1110

these permuted genes and other features, which, in expectation, are independent from each other.1111

Here, we highlighted the correlations between all proteins and the randomly permuted genes, whose1112

correlations are expected to be near zero.1113

Correlations of RNA-protein pairs We calculated a feature correlation matrix for the SLN111-1114

D1 dataset using either the totalVI sampling method or by calculating raw correlations as described1115

above. The resulting feature correlation matrices for both Pearson and Spearman correlations were1116

subset to each protein and its encoding RNA for all proteins with a unique encoding RNA in the1117

dataset (i.e., excluding RNA with multiple isoforms such as Ptprc).1118

4.10 Integration of multiple datasets1119

We compared totalVI’s integration performance to that of Scanorama [39] and Seurat v3 [38]. We1120

chose these methods because like totalVI, they provide both batch-corrected measurements and1121

a low-dimensional integrated latent space. The input to both Scanorama (scanorama.correct)1122

and Seurat v3 (FindIntegrationAnchors, IntegrateData) methods was a normalized matrix of1123

concatenated genes and proteins. Genes were subset to the same subset used as input to totalVI.1124

The RNA counts of this matrix were normalized following standard log library size normalization1125

(Equation 30). For proteins, we used a y → log(y+1) transformation. Finally, we standard scaled each1126

feature. Scanorama and Seurat v3 were run with default parameters. We compared the performance1127

of totalVI, Scanorama, and Seurat v3 using the following metrics:1128

Latent mixing metric The latent mixing metric measures how well the latent cell representations1129

are mixed between batches relative to the global frequency of batches. First, a cell-cell similarity1130

matrix is computed from a latent representation of cells. Next, select 100 cells uniformly at random,1131

and calculate the frequency of batches represented in each cell’s 100 nearest neighbors. Let p(n)i be1132

the frequency of batch i in the 100 nearest neighbors of cell n. Let qi be the global frequency of1133

batch i. Compute the negative relative entropy between the frequency of observed batches in the1134

neighborhood, and the global frequency of batches:1135

KL
(
p(n) ‖ q

)
=

B∑
i=1

p
(n)
i log

p
(n)
i

qi
(33)1136

Repeat this 50 times and return the average negative relative entropy.1137

Measurement mixing metric The measurement mixing metric describes how well the high-1138

dimensional measurements are batch corrected, and for each feature, is related to the Mann-Whitney1139

U statistic. Consider one feature in the batch-corrected data matrix placed in rank order. Let R11140

be the sum of the ranks of the cells in batch 1 and N1 be the number of cells in batch 1. Define1141

U1 = R1 − N1(N1+1)
2 . Similarly, compute U2 for batch 2 and return min(U1, U2). Higher values of1142

this metric indicate better mixing within that feature.1143

Feature retention metric The feature retention metric describes how spatial autocorrelation of1144

both RNA and protein change when comparing cells from an integrated latent representation to a1145

latent representation derived from each batch separately. Lower values of this metric indicate that the1146

integration procedure reduced the localization of feature expression, indicating some degree of random1147

mixing. We calculate it as follows. For two batches and a particular integration method, we calculate1148

Z1 and Z2, the latent representations of the cells of batch 1 and batch 2, respectively. The latent1149

space computation of the individual batches was chosen to closely match the integration method (see1150

below). We also calculate an integrated latent representation of both batches Z> = [Z̃1 Z̃2]. Let1151

D1 = [X1 Y1] be the combined RNA and protein batch 1 in which RNA is library size log normalized1152
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and proteins are log-transformed. Let E[H(D1, Z1)] be the expected feature autocorrelation score as1153

calculated by Hotspot [43]. Furthermore, let E[H(D1, Z̃1)] be the analogous quantity calculated using1154

the latent cell representations of batch 1 subsetted from the joint, integrated representation. The1155

feature retention metric is calculated as 1
2

∑2
i E[H(Di, Z̃i)] − E[H(Di, Zi)]. In the case of totalVI1156

union, features were intersected to compute this metric.1157

For Scanorama, we define Z1 and Z2 to be a 100-dimensional matrix produced with principal1158

components analysis (PCA), which is the same dimension reduction used in the integration method.1159

For Seurat v3, we similarly use PCA to reduce D1 and D2 to 30 dimensions, the same number of1160

dimensions used for integration. The input to PCA was the same as the input for the respective1161

method, except for Scanorama, where we additionally L2 normalized each cell, because this step is1162

done automatically by Scanorama’s correct method.1163

Missing protein imputation For Seurat v3, we imputed proteins based on mutual nearests1164

neighbors in the RNA data using the FindTransferAnchors and TransferData functions. Again,1165

RNA data were log library size normalized. Proteins were not normalized as input to Seurat. For1166

totalVI, after fitting the model, cells from the batch with held-out proteins were decoded conditioned1167

on being in the batch with observed protein data. We used the Pearson correlation of values on the1168

log scale to assess imputation accuracy. We note that CTP-net [91] is another method for imputing1169

protein expression from scRNA-seq data; however, at the time of writing, the CTP-net package only1170

offers a neural network that was pre-trained on specific CITE-seq datasets from human cells, with no1171

option training with a new dataset from either mice or humans. Therefore, a direct comparison to1172

totalVI and Seurat v3 is not straightforward.1173

4.11 Stratification of cells in SLN-all1174

We stratified cells of the mouse spleen and lymph node based on the SLN-all dataset (totalVI-intersect1175

model fit as described above in Section 2.6). We clustered cells in the totalVI latent space with1176

Scanpy’s implementation of the Leiden algorithm at resolution 1, resulting in 32 clusters [70, 92].1177

We repeated this approach to sub-cluster cells, finding a total of 43 clusters. We used Vision [61]1178

with default parameters for data exploration, including its implementation of the Wilcoxon rank sum1179

test, to identify cluster markers. Clusters were manually annotated based on a curated list of cell1180

type markers (Table 4). Clusters annotated as doublets, low quality cells, or cells undergoing the1181

cell cycle were removed from further analysis. Again, we visualized the totalVI latent space in two1182

dimensions using Scanpy’s implementation of the UMAP algorithm.1183

4.12 Differential expression analysis1184

The t-test and Wilcoxon test for each differential expression scenario were run on protein features1185

only using the Scanpy library, which produces adjusted p-values corrected by Benjamini-Hochberg1186

procedure [116]. A protein was considered to be differentially expressed if the adjusted p-value was1187

less than 0.05. Each application of totalVI differential expression tests to a dataset requires a trained1188

totalVI model. For each dataset used in DE analysis, all cells were included to train the model.1189

Throughout, we used our manual annotations from the SLN-all totalVI-intersect model run. The cells1190

in nuisance clusters (described in previous section) were removed before running totalVI differential1191

expression functions.1192

In a given totalVI differential expression test, we identified cell type markers by first filtering features1193

for significance (log Bayes factor > 0.7), and then sorting by the median log fold change. We only1194

retained genes with non-zero UMI counts in at least 10% of the subset of cells.1195

In the comparison to scVI gene Bayes factors, each method was trained independently on the1196

SLN111-D1 dataset. We ran scVI with 20 latent dimensions and negative binomial conditional1197

distribution to be consistent with totalVI. Differential expression of genes in scVI was computed1198

using the same LFC-based method, which is implemented in the scvi package. In reproducibility1199

benchmarking, totalVI was trained independently on the replicates. In the test between ICOS-high1200

Tregs and CD4 conventional T cells, we used the same totalVI-intersect model fit that was used to1201

manually annotate the cells.1202

30



Cell type annotation Selected markers Selected references

Activated CD4 T cells Itm2a, Cd69 [93]
B1 B cells Bhlhe41, CD43, CD19 [60, 94]
CD122+ CD8 T cells CD122, CD62L, CD183(CXCR3), CD8a [95, 96]
CD4 T cells CD4 [86]
CD8 T cells CD8a, CD8b [86]
cDC1s Clec9a, Cd8a, Xcr1, CD11c [97, 98]
cDC2s Itgax, Cd4, CD11c [97, 98]
Cycling B/T cells Birc5, Top2a, Mki67 [99]
Erythrocytes Hbb-bs, Hbb-bt [100]
GD T cells Cd3e, Tcrg-c1, Tcrg-c2, Maf, Il17re [101]
ICOS-high Tregs Foxp3, CD4, ICOS [102, 103]
Ifit3-high B cells Ifit3, CD19
Ifit3-high CD4 T cells Ifit3, CD4
Ifit3-high CD8 T cells Ifit3, CD8a
Ly6-high monocytes Ly6c2, Fn1, F13a1 [104]
Ly6-low monocytes Cd36, Cd300e, Fabp4 [105]
Mature B cells IgD, CD23, CD19 [59]
Migratory DCs Slco5a1, Anxa3, Nudt17, Adcy6, Cacnb3 [106]
MZ B cells CD21, CD19 [59]
MZ/Marco-high macrophages Cd209b, Marco [107]
Neutrophils S100a8 [108]
NK cells NK-1.1, Gzma, Ncr1 [86, 109]
NKT cells Cd3e, NK-1.1, Ccl5, Klrd1 [86, 110]
pDCs Siglech, Irf8, Runx2, CD11c [97, 111, 112]
Plasma B cells Jchain [113]
Red-pulp macrophages F4-80, C1qa, C1qb, Hmox1, Vcam1 [114]
Transitional B cells CD93, CD24, CD19 [58, 115]
Tregs Foxp3, CD4, CD357(GITR) [52]

Table 4: Annotated cell types and selected markers in the spleen and lymph node datasets.
cDC1: Conventional dendritic cell 1. cDC2: Conventional dendritic cell 2. GD: Gamma/delta. MZ: Marginal
zone. NK: Natural killer. NKT: Natural killer T. pDC: Plasmacytoid dendritic cell. Treg: Regulatory CD4 T
cell.

DE on imputed proteins In one totalVI model fit, SLN111-D1 and SLN111-D2 were integrated1203

with the proteins of SLN111-D2 held out. In the second totalVI model fit, these two datasets were1204

integrated with all data. In testing differential expression of proteins, and for each model fit, we1205

conditioned on SLN111-D1. This is an application of Equation 22, except that the prior p(s′) is 1 if1206

s′ = SLN111-D1 and 0 otherwise.1207

4.13 Archetypal analysis1208

This analysis was performed on the SLN-all intersect mode model run. As zn is distributed as logistic1209

normal, the latent space is then constrained to the probability simplex (i.e., each zn is non-negative1210

and sums to one). Archetypes correspond to vertices of the totalVI latent space, which means they1211

can be represented by the identity matrix Id, where d is the number of latent dimensions (20 in1212

all experiments). In this setting, the latent space is the 19-dimensional standard simplex. We first1213

identified and removed four archetypes from further interpretation that suffered from inactivity1214

(a known issue in training VAEs) [117]. For the remaining 16 latent dimensions, we decoded the1215

archetypes to obtain denoised RNA and protein archetypal expression profiles, all conditioned on1216

batch 0 (the SLN111-D1 experiment). We then computed denoised RNA and protein expression1217

profiles for all cells in SLN-all, conditioned on SLN111-D1. To derive signatures for each archetype,1218

we computed the mean and standard deviation of each feature in the denoised RNA and protein1219

expression matrices (without the archetypes) and standard scaled the archetypal profiles with respect1220

to this mean and standard deviation. We refer to this quantity as the archetype score. The top1221

features for each archetype were those with an archetype score greater than 2. The distance to1222
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the archetype is computed as the Manhattan distance from each cell’s latent representation to the1223

archetype. The distances per archeytpe were scaled into the range [0, 1].1224

4.14 B cell analysis1225

For this analysis, we used the totalVI-intersect model fit on the SLN-all dataset as described above1226

in Section 2.6. The SLN-all dataset was filtered to include all high-quality, non-doublet clusters1227

annotated as B cells (excluding plasma B cells), resulting in 15,560 cells (Methods 4.11).1228

Calculation of signature scores Gene signature analysis was conducted using Vision [61] with1229

default parameters. Gene signatures, including interferon response signatures, were downloaded from1230

MSigDB gene sets [118]. Signature scores were calculated on all cells in the SLN-all dataset based on1231

cell similarities defined by the totalVI latent space.1232

Identification of transitional and mature B cell feature modules totalVI Spearman cor-1233

relations between all features were calculated separately within the transitional B cell cluster and1234

the mature B cell cluster. Features were subset by the following method. From a one-vs-one DE1235

test between transitional and mature B cells, we selected the top ten marker genes and top three1236

marker proteins for each cluster (Methods 4.12). We added to this list the four features most highly1237

correlated with each differentially expressed feature within its respective cluster. This resulted in1238

a list of both transitional and mature features which we used to subset the full feature correlation1239

matrix. Features were hierarchically clustered separately for transitional and mature B cells using1240

Seaborn’s clustermap with default parameters.1241

When plotting totalVI expression of each feature as a function of 1− Z16, each feature was standard1242

scaled and smoothed with a loess curve. Spearman correlations were calculated between each feature1243

and 1− Z16. The p-values of these correlations were all significant (Benjamini-Hochberg adjusted1244

P < 0.001).1245

Code availability1246

The code to reproduce the experiments of this manuscript is available at https://github.com/1247

YosefLab/totalVI_reproducibility. The reference implementation of totalVI is available via the1248

scVI package at https://github.com/YosefLab/scVI.1249

Data availability1250

Processed data are available in the reproducibility GitHub repository. Raw data are being uploaded to1251

GEO. The SLN-all dataset can be explored interactively with Vision at http://s133.cs.berkeley.1252

edu:9000/Results.html.1253
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5 Supplementary Figures1513

Figure S1: Evalutation of totalVI model. a, Posterior predictive check of coefficient of variation (CV)
of genes and proteins. For each of the PBMC10k, MALT, and SLN111-D1 datasets and for each model
(totalVI, scVI, factor analysis with normalized input) the average coefficient of variation from posterior
predictive samples was computed for each feature. Violin plots summarize the distribution of CVs for genes
and proteins. Mean absolute error (MAE) between raw data CVs and average posterior predictive CV are
reported. b, MAE between held out data and posterior predictive mean separated by genes and proteins for
each model and dataset. c, Calibration error of held-out data reported separately for genes and proteins. d,
Held-out reconstruction loss of genes for scVI and totalVI. e, Inference time for totalVI and scVI across cells
randomly subsampled to different levels from SLN-all. scVI was run with only genes.
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Figure S2: Protein background in cells and empty droplets. a-c, Histogram of log(protein counts +
1) in the SLN111-D1 dataset for B cells, T cells, and empty droplets (Methods 4.8) for CD19 (a), CD20 (b),
and CD28 (c). d-f, Fraction of empty droplets, B cells, or T cells with > 0 UMIs detected for a given RNA
(left, hatched) or protein (right, solid). RNA/proteins displayed are Cd19/CD19 (d), Ms4a1/CD20 (e), and
Cd28/CD28 (f). g, Barcode rank plot for all barcodes detected in the SLN111-D1 dataset. Red lines at 20
and 100 RNA UMI counts indicate the lower and upper bounds, respectively, used to define empty droplets
in (a-f).
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Figure S3: Classification of cell types by marker proteins. a, Performance of totalVI and a Gaussian
mixture model (GMM) fit on all cells for each protein of the SLN111-D1 dataset. Area under the receiver
operating characteristic curve (ROC AUC score) was calculated using as input either the totalVI foreground
probability or GMM foreground probability where the indicated cell type was the positive population out of
all B and T cells. Bolded ROC AUC scores indicate higher values (better performance). Highlighted in blue
are two proteins for which totalVI noticeably outperformed the GMM. b, Receiver operating characteristic
(ROC) curves for CD19 (B cells), CD20 (B cells), or CD28 (T cells).
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Figure S4: totalVI decouples protein foreground and background. totalVI was applied to the
SLN111-D1 dataset. a-c, CD19 protein (encoded by Cd19 RNA). (a) totalVI foreground probability vs
log(protein counts+ 1). Vertical line denotes protein foreground/background cutoff determined by a GMM.
Horizontal lines denote foreground probability of 0.2 and 0.8. Cells with foreground probability greater than
0.8 or less than 0.2 are colored by quadrant, while the remaining cells are gray. (b) UMAP plots of the
totalVI latent space. Each quadrant contains cells from the corresponding quadrant of (a) in color with the
remaining cells in gray. (c) RNA expression (log library-size normalized; Methods 4.8) for cells colored in
(a). d, UMAP plots of the totalVI latent space colored by (log(counts + 1)) of cell type marker proteins
(Table 4). e, totalVI foreground probability for all proteins across all cells in the SLN111-D1 dataset.
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Figure S5: totalVI decouples foreground and background for trimodal protein distributions
and denoises protein data. a, b CD4 protein expression in the PBMC10k dataset. (a) Trimodal
distribution of log(protein counts + 1). (b) UMAP plot of the totalVI latent space colored by totalVI
foreground probability. c-e, UMAP plots of the totalVI latent space for the SLN111-D1 dataset. Plots are
colored by log(protein counts+ 1) (top) and log(totalVI denoised protein+ 1) (bottom) for CD19 (c), CD20
(d), and CD28 (e). f, g, Distributions of log(protein counts+ 1) (f) and log(totalVI denoised protein+ 1)
(g) for CD19 protein in B and T cells. y-axis is truncated at 3.
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Figure S6: RNA-protein correlations. a, b, 2d density plots of Pearson correlations between all RNA
and protein features in the SLN111-D1 dataset as well as 100 additional genes whose expression was randomly
permuted. Correlations between all proteins and the randomly permuted genes are colored in red. Raw
correlations were calculated between log library-size normalized RNA and log(protein counts + 1). (a),
Naive totalVI correlations were calculated between totalVI denoised RNA and totalVI denoised proteins.
(b), totalVI correlations were calculated between denoised RNA and proteins sampled from the posterior
(Methods 4.3). c, Pearson correlations between each protein and its encoding RNA for all proteins with a
unique encoding RNA, colored by the mean probability foreground of the protein across all cells. totalVI
correlations were calculated as in (b) and raw correlation were calculated as in (a, b). d-f, Same as (a-c), but
for Spearman correlations.
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Figure S7: UMAP embeddings of integration methods on spleen and lymph node data. a-d,
For each method, UMAP plots colored by dataset, and by log(counts+ 1) of key marker proteins (Table 4).
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Figure S8: Benchmarking of integration methods on PBMC data. Integration methods were
applied to PBMC10k and PBMC5k. a-d, UMAP plots of integrated latent spaces. e, Latent mixing metric
and feature retention metric for each method. f, Measurement mixing metric applied indivdually to each
batch-corrected feature. g, UMAP plot of integrated latent space from totalVI union mode when holding out
the proteins from PBMC5k. h, Pearson correlation between imputed and observed proteins (log scale) from
PBMC5k for totalVI and Seurat v3.
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Figure S9: Integration of SLN-all with totalVI-intersect. a, b, UMAP plot of SLN-all colored
by (a) dataset, and (b) tissue. c, Heatmap of proteins used for annotation. Proteins (columns) are
log(protein counts + 1) scaled by column for visualization. d, Dotplot of RNA markers used for annotation.
RNA is log library size normalized.
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Figure S10: Integration of SLN-all with union of panels. a-c, UMAP plot of SLN-all colored by
(a) cell types derived from manual annotation of model run with intersection of panels, (b) tissue, and (c),
dataset.
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Figure S11: Differential expression analysis. a, 2d density plot of totalVI and scVI log Bayes factors
for genes. Bayes factors were computed for each gene in one-vs-all tests on the SLN111-D1 dataset. b,
Number of isotype controls called differentially expressed in one-vs-all tests for totalVI, totalVI-wBG (totalVI
test without background removal), Wilcoxon rank-sum, and t-test. Tests were applied to SLN208-D1, for
which isotype controls were retained. c-e, Significance level (Bayes factors for totalVI, adjusted p-value for
frequentist tests) for proteins in one-vs-all tests computed on SLN111-D1 and SLN111-D2 for each of (c)
totalVI, (d) t-test, (e) Wilcoxon. f, Bayes factors for proteins in one-vs-all tests computed on the SLN111
datasets integrated with and without the SLN111-D2 proteins held-out. Differential expression tests for both
model fits were conditioned on SLN111-D1. Bayes factors are colored by the average protein expression from
SLN111-D1.
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Figure S12: Differential expression using totalVI-wBG, which does not correct for the protein
background component. a Volcano plot for the ICOS-high Tregs vs CD4 T cells test. The same putative
positives and negatives as Figure 4d are highlighted here. b The LFC estimates for totalVI and totalVI-wBG
on the CD4 T cells versus all others test.
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Figure S13: Interpreting totalVI latent dimensions with archetypal analysis. a, b, Heatmap of
top (a) gene and (b) protein features for each archetype. The archetype score corresponds to the standard
scaled archetypal expression profiles (Methods 4.13). Heatmaps are individually column normalized for
visualization. c, Fraction of proteins in top archetypal features for each archetype. Features in each archetype
were selected in the “top” if they had an archetype score of greater than 2. For these features, we performed
a hypergeometric test to determine if proteins were over-represented in this feature set relative to the global
distribution of feature types.

50



Figure S14: Visualization of archetypes in totalVI-intersect model of SLN-all. a, UMAP plots of
SLN-all cells colored by latent dimension value. b, totalVI protein expression for CD24 and CD93 proteins as
a function of distance to archetype 16. c, totalVI denoised expression for Isg20 and Ifit3 genes as a function
of distance to archetype 7. Archetype is colored in blue, all other cells in grey.
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Figure S15: Interferon signatures in the mouse spleen and lymph node. a, b, UMAP of totalVI
latent space for B cells of the SLN-all dataset (a) colored by the Hallmark Interferon Alpha Response
signature score and b colored by the Hallmark Interferon Gamma Response signature score (Methods 4.14).
c, d, Same as in (a, b), but for all cells in SLN-all.
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Figure S16: totalVI identifies correlated modules of RNA and proteins that are associated
with the maturation of transitional B cells. a, totalVI Spearman correlations in mature B cells between
the same RNA and proteins as in Figure 5h. Features were hierarchically clustered within mature B cells. b,
UMAP of the totalVI latent space colored by totalVI RNA expression of Rag1. c, totalVI RNA expression of
Rag1 as a function of 1 - Z16 (the totalVI latent dimension associated with transitional B cells). d, Histogram
of Spearman correlations between each feature in (a) and 1 - Z16.
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Figure S17: totalVI probabilistic graphical model. Shaded nodes represent observed random variables.
Unshaded nodes represent latent variables. Edges denote conditional independence. Rectangles (“plates”)
represent independent replication.
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A Protein considerations1514

A.1 Experimental considerations1515

Sources of technical variation in CITE-seq experiments, particularly protein background, are depen-1516

dent on the experimental method itself. There are a number of potential experimental sources of1517

background. We primarily discussed ambient antibodies and non-specific antibody binding. Another1518

potential source of background could arise from oligonucleotide barcodes that become dissociated1519

from their conjugated antibody. Similarly to barcoded antibodies, ambient oligonucleotide barcodes1520

could contaminate cell-containing droplets or could non-specifically bind to the cell surface. In1521

this study, we do not distinguish between background due to antibodies or background due to free1522

oligonucleotide barcodes.1523

Although in our experiments we used the standard CITE-seq protocol, there are a number of protocol1524

modifications that could change the amount of background. For instance, increasing the number1525

of washes after staining cells with antibodies could reduce ambient background. Alternatively, a1526

buffer modification could reduce the amount of non-specific binding. Both washing and blocking1527

are frequently considered in flow cytometry protocol designs. However, implementing these protocol1528

changes in an effort to eliminate background could come with trade-offs; reducing background by1529

washing and blocking would likely reduce true signal by reducing total cell numbers or blocking1530

specific binding, respectively.1531

Another common experimental practice to modulate the amount of background is antibody titration,1532

meaning that different antibodies are added to the experiment at different concentrations. At the1533

optimal titration, an antibody would have the maximal signal-to-noise ratio. This would require the1534

antibody to be present at a sufficient concentration to specifically bind its target protein and generate1535

a detectable signal, but not at so high a concentration as to increase protein background by binding1536

non-specifically or remaining at high concentration in the ambient solution. In a CITE-seq experiment,1537

it is possible that the recommended antibody concentration is too low to detect foreground signal1538

from a given protein. Finding the optimal concentration for each antibody might be challenging,1539

since the optimal concentration might be different for different cell types or experimental systems. If1540

titrations are modified per antibody, there are a few points to consider. When antibodies are titrated1541

at different concentrations, it becomes infeasible to quantify absolute protein levels. For example,1542

it would not be possible to determine if one protein was expressed at a higher level than another1543

protein. In addition, even if every protein in the cell were measured with a theoretical unbiased1544

antibody panel, the sum of all protein counts from a cell (referred to as the protein library size) could1545

not serve as a meaningful estimate of total protein molecules in a cell or cell size because the relative1546

amounts of each protein have been manipulated.1547

In our modeling and analysis, we considered whether protein library size should be taken into account.1548

In scRNA-seq data, we consider library size to be a nuisance factor that is reflective of a combination1549

of sequencing depth and cell size. In CITE-seq experiments where only selected markers are measured,1550

there is no guarantee that the markers selected are representative of the total protein content in the1551

cell. For example, a cell with few detected protein counts might in reality express other unmeasured1552

proteins at higher levels, meaning this cell’s total counts reflect the selection of markers rather than1553

reflecting nuisance variation like sequencing depth or cell size. Therefore, treating protein library size1554

as a nuisance factor does not make sense in this context. Because measured proteins are biased in this1555

manner, we do not assume that the protein data is compositional, as is assumed by other methods1556

that use a centered log ratio transformation for normalization. In the future, more unbiased protein1557

panels might necessitate further consideration of protein library size in CITE-seq data analysis.1558

For proteins that are expressed at low levels or are only expressed in rare cell types, it might be1559

necessary to increase sequencing depth to increase the sensitivity to detect these molecules. In1560

addition, sequencing depth could play a role in the ability of totalVI to decouple protein foreground1561

and background (i.e., with more counts, it might become easier to separate what appear to be1562

overlapping foreground and background distributions). Determining the optimal sequencing depth1563

for protein panels could be an important cost consideration in CITE-seq experiments, particularly as1564

the size of protein panels increases. Since in the CITE-seq protocol RNA and protein libraries are1565

prepared independently, future work could determine the value of these two molecules in various1566

downstream analysis tasks to make recommendations for sequencing depth for each library.1567
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Because the barcoded antibodies used in this study came from clones that have been previously1568

validated, we were surprised to find that some common protein markers (e.g., IgM, CCR7) appeared1569

to have little or no signal. Aside from the consideration of titration and sequencing depth discussed1570

above, an additional explanation could be the uniform staining conditions for all antibodies in the1571

CITE-seq panel simultaneously. For example, the chemokine receptor CCR7 is a well-documented1572

marker in T cells and typically requires staining at higher temperature and for longer times than1573

other antibodies due to its constant cycling onto and off of the cell surface. For future CITE-seq1574

experiments, it might be worthwhile to consider the optimal staining conditions (e.g., time and1575

temperature) for each antibody independently rather than staining with all antibodies at once.1576

A.2 Modeling considerations1577

Guided by the points raised in Appendix A.1, we considered a variety of protein likelihoods before1578

settling on the version used in this manuscript. Among our considerations were the interpretability1579

of the parameters as well as how well the likelihood captured our view on the CITE-seq protein data1580

generating process. For example, we considered models that included a latent variable for the protein1581

library size (analogous to `n for RNA), though as discussed in Appendix A.1, protein library size1582

and RNA library size do not convey the same information.1583

We also considered alternative models to decouple protein background. Initially, we attempted to use1584

models that assume every cell receives the same distribution of protein background scaled by some1585

cell-specific scalar. However, we found these models inadequate for decoupling the protein signal,1586

which again suggests that ambient antibodies can not fully explain the protein background.1587

The likelihood we used in this manuscript,1588

ynt | zn, βn, sn ∼ NegativeBinomialMixture(βnt, βntαnt, πnt), (34)1589

also has some import downstream considerations. First, the mixture assumes that the observed counts1590

for a given cell n and protein t are generated from either the background component (with probability1591

πnt) or the foreground component (with probability 1− πnt). Despite the fact that the background1592

mean parameter βnt appears in the foreground mean βntαnt, this likelihood does not allow us to1593

correct the foreground for possible background contamination. Here, the double usage of βnt is to1594

help identify the mixture model. In other words, we cannot “subtract the background” from ynt that1595

are determined to be in the foreground. Perhaps this limitation could be addressed in future work,1596

in which different latent variables are associated with local and global sources of background; though1597

this will require greater understanding of the experimental mechanisms previously discussed.1598

B Integrating out latent variables1599

Here we show that if1600

w ∼ Gamma(θ, `ρ) (35)1601

x | w ∼ Poisson(w) (36)1602

then x ∼ NegativeBinomial(`ρ, θ). Note that we have dropped all subscripts and each variable here1603

is a scalar. While we parameterize the Gamma with its shape and mean, a more conventional form is1604
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with its shape and rate, so w ∼ Gamma(θ, θ/`ρ)1605

p(x) =

∫ ∞
0

p(x | w)p(w)dw (37)1606

=

∫ ∞
0

wxe−w

Γ(x+ 1)

(θ/`ρ)θ

Γ(θ)
wθ−1e−θw/`ρdw (38)1607

=
(θ/`ρ)θ

Γ(x+ 1)Γ(θ)

∫ ∞
0

wx+θ−1e−(1+θ/`ρ)wdw (39)1608

=
(θ/`ρ)θ

Γ(x+ 1)Γ(θ)

Γ(x+ θ)

(1 + θ/`ρ)x+θ
(40)1609

=
Γ(x+ θ)

Γ(x+ 1)Γ(θ)

(
θ/`ρ

1 + θ/`ρ

)θ (
1

1 + θ/`ρ

)x
(41)1610

=
Γ(x+ θ)

Γ(x+ 1)Γ(θ)

(
θ

`ρ+ θ

)θ (
`ρ

`ρ+ θ

)x
(42)1611

In the fourth line, we use the fact that the integrand is an unnormalized gamma distribution. The1612

final line is a negative binomial distribution with mean `ρ and inverse dispersion θ. Therefore, we have1613

a direct link between the parameters of the negative binomial and the underlying parameters of the1614

Poisson rate. Finally, we note that we could have written w ∼ Gamma(θ, ρ) and x | w ∼ Poisson(`w)1615

and achieved the same result.1616

C totalVI implementation details1617

Evidence lower bound derivation Here we derive the Evidence lower bound (ELBO), which1618

is ultimately used in optimizing the model and variational parameters. For shorthand, we drop1619

subscripts and inference and generative parameters ν and η. The joint likelihood based on the totalVI1620

generative model for a single cell factorizes as1621

p(x, y, β, z, ` | s) = p(x | z, `, s)p(y | β, z, s)p(β | s)p(z)p(` | s). (43)1622

In the model specification, we use the latent variable z ∼ LogisticNormal(0, I). Here we use the1623

logistic normal definition of [119], in which a normal random variable δ ∼ Normal(0, I) is transformed1624

by a softmax function, embedding the random variable in the simplex. Thus, z = softmax(δ).1625

However, the softmax function is not invertible, so for simplicity we consider the underlying latent1626

variable δ. In this setting, z, which is ultimately the input to the decoder, is treated as a likelihood1627

parameter. Therefore, we can rewrite the joint likelihood as1628

p(x, y, β, δ, ` | s) = p(x | δ, `, s)p(y | β, δ, s)p(β | s)p(δ)p(` | s). (44)1629

To perform variational inference, we define the variational posterior distribution as1630

q(β, δ, ` | x, y, s) = q(β | δ, s)q(δ | x, y, s)q(` | x, y, s). (45)1631

The Evidence LOwer Bound (ELBO) is derived using Jensen’s inequality. We use the shorthand1632

notation q(β, δ, `) = q(β, δ, ` | x, y, s).1633

log p(x, y | s) = logEq(β,δ,`)
[
p(x, y, β, δ, ` | s)

q(β, δ, `)

]
(46)1634

≥Eq(β,δ,`)
[
log

p(x, y, β, δ, ` | s)
q(β, δ, `)

]
(47)1635

=Eq(β,δ,`) [log p(x, y | β, δ, `, s)] + Eq(β,δ,`)
[
log

p(β | s)p(δ)p(` | s)
q(β, δ, `)

]
(48)1636

=Eq(β,δ,`) [log p(x, y | β, δ, `, s)]−KL (q(`) ‖ p(` | s))−KL (q(δ) ‖ p(δ)) (49)1637

− Eq(δ) [KL (q(β) ‖ p(β | s))] (50)1638

To compute the KL divergences of lognormal random variables we note that the KL divergence is1639

invariant to invertible transformations, so the KL can be computed in closed form using the KL1640
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Algorithm 2: Inference for totalVI
Initialize inverse dispersion parameters θ, φ, background parameters ct, dt and encoder/decoder
neural network parameters
for iteration i = 1, 2, ..., do

Randomly choose M cells for mini-batch C
for each cell n in C do

Encode xn, yn, sn to obtain approximate posterior parameters
Sample zn, `n, βn from approximate posterior q(βn, δn, `n | xn, yn, sn)
Decode zn, sn to obtain likelihood parameters αn, πn, ρn
for each gene g do

Compute log p(xng | `n, zn, sn)
for each protein t do

Compute log p(ynt | βnt, zn, sn)
Update parameters using gradient of ELBO estimate

between normal random variables. The log likelihood of a negative binomial mixture distribution is1641

computed using numerically stable functions in Pytorch (Appendix D). The ELBO derived here is1642

amenable to the reparameterization trick used to train VAEs [25]. Estimates of the expectations1643

in the ELBO are taken via Monte Carlo and noisy gradients of the ELBO are used in a stochastic1644

optimization scheme. A sketch of the inference procedure for totalVI is in Algorithm 2.1645

Approximate posterior specification The approximate posterior distributions are specified by1646

neural networks. In particular, one neural network takes as input the triple (x, y, s) and outputs1647

the parameters of q(δ | x, y, s)q(` | x, y, s). An additional neural network maps (δ, s) to the mean1648

and variance parameters of q(β | z, s) through z. The variational distributions match their priors1649

in family (e.g., q(δ | x, y, s) is a Gaussian with diagonal covariance matrix). A posterior draw of z,1650

which we used as input to clustering and visualization algorithms, as well as used for archetypal1651

analysis is then obtained by1652

1. Draw δ from q(δ | x, y, s)1653

2. Set z = softmax(δ)1654

Neural networks The encoder neural network has one shared hidden layer of 256 nodes followed1655

by a layer of 512 nodes. The output of the 512 nodes are split in half and are used as input for1656

linear layers that parameterize q(δ | x, y, s) and q(` | x, y, s), respectively. The final encoder neural1657

network of one hidden layer and 256 hidden nodes takes as input (z, s) and outputs the parameters1658

of q(β | δ, s). The parameters of δ are 20-dimensional mean and variance parameters. The decoder1659

consists of three individual neural networks each with one hidden layer and 256 nodes. The first maps1660

to the parameters of the mean of the RNA likelihood (ρn). The second maps to the foreground mean1661

of the protein likelihood (αn). The third maps to the mixing parameter of the protein likelihood1662

mixture (πn). Each of these decoder networks takes as input (z, s). Furthermore, (z, s) are reinjected1663

at each hidden layer. All neural networks use batch normalization [120], dropout regularization [121],1664

and ReLU activations in hidden layers. The model parameters θ, φ, c, and d are treated as global1665

neural network parameters, optimized to maximize the ELBO.1666

Hyperparameters The neural network architecture previously described was used throughout1667

this manuscript without modification. There are a number of other hyperparameters used to train1668

neural networks that we also held constant in all experiments. This includes the learning rate of the1669

optimizer (lr=4e-3), the size of the training test (90%), the KL warmup scheme (0.75×NumCells1670

minibatches, or 213 epochs with the fixed training set size of 90%), and the number of training epochs1671

(500 epochs). An early stopping scheme is performed with respect to the 10% of cells in the test set.1672

If there is no improvement of the held-out ELBO of the test set with 30 epochs, the learning rate is1673

multiplied by 0.6. If there is no improvement after 45 epochs, the inference procedure is stopped.1674

The totalVI package includes a module for likelihood-guided hyperparameter tuning, which can be1675

used to revisit the default parameters, especially as the experimental protocol evolves.1676
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D Numerical considerations for the negative binomial mixture1677

distribution1678

For a single negative binomial mixture component, we use numerically stable functions provided1679

by PyTorch (e.g., the log gamma function). For a mixture of negative binomials, we rewrite the1680

distribution to use numerically stable functions like logsumexp and softplus.1681

Let pb(y) = p(y | z, µ, s, v = 1) be the probability mass function for the background and pf (y) =1682

p(y | z, µ, s, v = 0) be the probability mass function for the foreground. Then by integrating over v1683

(recalling that v ∼ Bernoulli(π)),1684

log p(y | z, µ, s) = log
(
πp(y | z, µ, s, v = 1) + (1− π)p(y | z, µ, s, v = 0)

)
. (51)1685

We now rewrite this in a form more amenable for optimization. We recall from Algorithm 1 that1686

π = hπ(z, s; Ω). Thus, with c(z, s) = logit(hπ(z, s)), then π = 1/(1 + exp(−c(z, s))). Also, let S be1687

the softplus function: x→ log(1 + ex).1688

log p(y | z, µ, s) = log
(
πpb(y) + (1− π)pf (y)

)
(52)1689

= log
(
pf (y) + πpb(y)− πpf (y)

)
(53)1690

= log

(
pf (y) + pf (y)e−c(z,s)

1 + e−c(z,s)
+
pb(y)− pf (y)

1 + e−c(z,s)

)
(54)1691

= log
(
pb(y) + pf (y)e−c(z,s)

)
− log

(
1 + e−c(z,s)

)
(55)1692

= log
(
elog p

b(y) + elog p
f (y)e−c(z,s)

)
− log

(
1 + e−c(z,s)

)
(56)1693

= logsumexp
(
log pb(y), log pf (y)− c(z, s)

)
− S(−c(z, s)) (57)1694
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